【解析版】巢湖市无为三中2021届九年级上月考数学试卷_第1页
【解析版】巢湖市无为三中2021届九年级上月考数学试卷_第2页
【解析版】巢湖市无为三中2021届九年级上月考数学试卷_第3页
【解析版】巢湖市无为三中2021届九年级上月考数学试卷_第4页
【解析版】巢湖市无为三中2021届九年级上月考数学试卷_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、安徽省巢湖市无为三中2021届九年级上学期月考数学试卷10月份一、选择题每题4分,40分1以下函数中,是二次函数的是ABy=x2x12CD2把方程xx+2x12=0化为一元二次方程的一般形式是A5x24x4=0Bx25=0C5x22x+1=0D5x24x+6=03抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,那么所得抛物线的解析式为Ay=x2+2x2By=x2+2x+1Cy=x22x1Dy=x22x+14将一元二次方程2x23x+1=0配方,以下配方正确的选项是Ax2=16B2x2=Cx2=D以上都不对5三角形两边长分别为2和9,第三边的长为二次方程x214x+48=0的根,那么这

2、个三角形的周长为A11B17C17或19D196抛物线y=ax2+bx,当a0,b0时,它的图象经过A一,二,三象限B一,二,四象限C一,三,四象限D一,二,三,四象限7某超市一月份的营业额为200万元,第一季度的总营业额共1000万元,如果平均每月增长率为x,那么由题意列方程应为A2001+x2=1000B200+2002x=1000C200+2003x=1000D2001+1+x+1+x2=10008抛物线y=ax2+bx+c的图象如图,OA=OC,那么Aac+1=bBab+1=cCbc+1=aD以上都不是9二次函数y=2x32+1以下说法:其图象的开口向上;其图象的对称轴为直线x=3;其

3、图象顶点坐标为3,1;当x2,y随x的增大而减小;当x=0时,y最小值为1那么其中说法正确的有A1个B2个C3个D4个10关于x的一元二次方程a1x22x+3=0有实数根,那么整数a的最大值是A2B1C0D1二、填空题每空4分,20分11使分式的值等于零的x的值是12点Pa,m和Qb,m是抛物线y=2x2+4x3上的两个不同点,那么a+b=13一元二次方程2x23x1=0与x2x+3=0的所有实数根的和等于14假设关于x的方程ax+m2+b=0的两个根1和4amb均为常数,a0,那么方程ax+m32+b=0是15如下图的是二次函数y=ax2+bx+c的图象,某学霸从下面五条信息中:1a0;2b

4、24ac0;3c1;42ab0;5a+b+c0准确找到了其中错误的信息,它们分别是只填序号三、解答题1616分解方程5x12=35x1x2+2x=717假设抛物线y=ax2+bx+c的顶点是A2,1,且经过点B1,0,求该抛物线的函数解析式18假设3+是方程x2+kx+4=0的一个根,求另一根和k的值19某工厂大门是一抛物线形水泥建筑物如图,大门地面宽AB=4米,顶部C离地面高度为4.4米现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米请通过计算,判断这辆汽车能否顺利通过大门?20某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,

5、尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,假设商场平均每天盈利2100元,每件衬衫应降价多少元?21如图,线段AB的长为2,C为线段AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形ACD和BCE1设DE的长为y,AC的长为x,求出y与x的函数关系式;2求出DE的最小值22如图,一位篮球运发动在离篮圈水平距离4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,到达最大高度3.5m,然后准确落入篮框内篮圈中心离地面高度为3.05m1建立图中所示的直角坐标系,求抛物线所对应的函数关系式;2假设该运发动

6、身高1.8m,这次跳投时,球在他头顶上方0.25m处出手问:球出手时,他跳离地面多高?23如下图,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x轴上,点C在直线y=x2上1求矩形各顶点坐标;2假设直线y=x2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;3判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由安徽省巢湖市无为三中2021届九年级上学期月考数学试卷10月份一、选择题每题4分,40分1以下函数中,是二次函数的是ABy=x2x12CD考点:二次函数的定义 分析:根据二次函数的定义逐一进行判断解答:解:A、等式的右边不是整式,不是二次函数,故本选

7、项错误;B、原式化简后可得,y=2x1,故本选项错误;C、符合二次函数的定义,故本选项正确;D、分母中含有未知数,不是整式方程,因而不是一元二次方程,故本选项错误;应选C点评:此题考查了二次函数的定义,要知道:形如y=ax2+bx+c其中a,b,c是常数,a0的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项x为自变量,y为因变量等号右边自变量的最高次数是22把方程xx+2x12=0化为一元二次方程的一般形式是A5x24x4=0Bx25=0C5x22x+1=0D5x24x+6=0考点:一元二次方程的一般形式 分析:先把xx+转化为x22=x25;然后再把2x12利用完全平方公

8、式展开得到4x24x+1再合并同类项即可得到一元二次方程的一般形式解答:解:xx+2x12=0即x22+4x24x+1=0移项合并同类项得:5x24x4=0应选:A点评:此题主要考查了利用平方差公式和完全平方公式化简成为一元二次方程的一般形式3抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,那么所得抛物线的解析式为Ay=x2+2x2By=x2+2x+1Cy=x22x1Dy=x22x+1考点:二次函数图象与几何变换 分析:由于抛物线的图象向左平移2个单位,再向下平移1个单位,那么x=x2,y=y1,代入原抛物线方程即可得平移后的方程解答:解:由题意得:,代入原抛物线方程得:y+1=x+

9、22,变形得:y=x2+2x+1应选B点评:此题考查了二次函数图象的几何变换,重点是找出平移变换的关系4将一元二次方程2x23x+1=0配方,以下配方正确的选项是Ax2=16B2x2=Cx2=D以上都不对考点:解一元二次方程-配方法 分析:方程移项后,方程两边除以2变形得到结果,即可判定解答:解:方程移项得:2x23x=1,方程两边除以2得:x2x=,配方得:x2x+=,即x2=,应选C点评:此题考查了解一元二次方程配方法,熟练掌握完全平方公式是解此题的关键5三角形两边长分别为2和9,第三边的长为二次方程x214x+48=0的根,那么这个三角形的周长为A11B17C17或19D19考点:解一元

10、二次方程-因式分解法;三角形三边关系 分析:易得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可解答:解:解方程x214x+48=0得第三边的边长为6或8,依据三角形三边关系,不难判定边长2,6,9不能构成三角形,2,8,9能构成三角形,三角形的周长=2+8+9=19应选D点评:求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯6抛物线y=ax2+bx,当a0,b0时,它的图象经过A一,二,三象限B一,二,四象限C一,三,四象限D一,二,三,四象限考点:二次函数图象与系数的关系 分析:由a0可以得到开口方向向上,由b0,a0可以推出对

11、称轴x=0,由c=0可以得到此函数过原点,由此即可确定可知它的图象经过的象限解答:解:a0,开口方向向上,b0,a0,对称轴x=0,c=0,此函数过原点它的图象经过一,二,四象限应选B点评:此题主要考查二次函数的以下性质7某超市一月份的营业额为200万元,第一季度的总营业额共1000万元,如果平均每月增长率为x,那么由题意列方程应为A2001+x2=1000B200+2002x=1000C200+2003x=1000D2001+1+x+1+x2=1000考点:由实际问题抽象出一元二次方程 专题:增长率问题分析:先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三

12、月份的营业额=1000万元,把相关数值代入即可解答:解:一月份的营业额为200万元,平均每月增长率为x,二月份的营业额为2001+x,三月份的营业额为2001+x1+x=2001+x2,可列方程为200+2001+x+2001+x2=1000,即2001+1+x+1+x2=1000应选:D点评:考查由实际问题抽象出一元二次方程中求平均变化率的方法假设设变化前的量为a,变化后的量为b,平均变化率为x,那么经过两次变化后的数量关系为a1x2=b得到第一季度的营业额的等量关系是解决此题的关键8抛物线y=ax2+bx+c的图象如图,OA=OC,那么Aac+1=bBab+1=cCbc+1=aD以上都不是

13、考点:二次函数图象与系数的关系 分析:由OA=OC可以得到点A、C的坐标为c,0,0,c,把点A的坐标代入y=ax2+bx+c得ac2bc+c=0,cacb+1=0,然后即可推出ac+1=b解答:解:OA=OC,点A、C的坐标为c,0,0,c,把点A的坐标代入y=ax2+bx+c得,ac2bc+c=0,cacb+1=0,c0acb+1=0,ac+1=b应选A点评:此题考查了点与函数的关系,解题的关键是灵活应用数形结合思想9二次函数y=2x32+1以下说法:其图象的开口向上;其图象的对称轴为直线x=3;其图象顶点坐标为3,1;当x2,y随x的增大而减小;当x=0时,y最小值为1那么其中说法正确的

14、有A1个B2个C3个D4个考点:二次函数的性质 专题:计算题分析:利用抛物线的顶点式和二次函数的性质分别进行判断解答:解:a=2,抛物线开口向上,所以正确;y=2x32+1,抛物线的对称轴为直线x=3,顶点坐标为3,1,所以错误;当x3时,y随x的增大而减小,所以错误;当x=3时,y有最小值1,所以错误应选A点评:此题考查了二次函数的性质:二次函数y=ax2+bx+ca0的顶点坐标是,对称轴直线x=,二次函数y=ax2+bx+ca0的图象具有如下性质:当a0时,抛物线y=ax2+bx+ca0的开口向上,x时,y随x的增大而减小;x时,y随x的增大而增大;x=时,y取得最小值,即顶点是抛物线的最

15、低点当a0时,抛物线y=ax2+bx+ca0的开口向下,x时,y随x的增大而增大;x时,y随x的增大而减小;x=时,y取得最大值,即顶点是抛物线的最高点10关于x的一元二次方程a1x22x+3=0有实数根,那么整数a的最大值是A2B1C0D1考点:根的判别式 分析:根据方程有实数根,得到根的判别式的值大于等于0,且二次项系数不为0,即可求出整数a的最大值解答:解:根据题意得:=412a10,且a10,解得:a,a1,那么整数a的最大值为0应选C点评:此题考查了根的判别式,一元二次方程的定义,弄清题意是解此题的关键二、填空题每空4分,20分11使分式的值等于零的x的值是6考点:分式的值为零的条件

16、 专题:计算题分析:分式的值为零:分子为0,分母不为0解答:解:根据题意,得x25x6=0,即x6x+1=0,且x+10,解得,x=6故答案是:6点评:此题考查了分式的值为零的条件假设分式的值为零,需同时具备两个条件:1分子为0;2分母不为0这两个条件缺一不可12点Pa,m和Qb,m是抛物线y=2x2+4x3上的两个不同点,那么a+b=2考点:二次函数图象上点的坐标特征 专题:压轴题分析:由于P、Q两点的纵坐标相等,故这两点是抛物线上关于对称轴对称的两点;而抛物线y=2x2+4x3的对称轴为x=1,根据对称轴x=,可求a+b的值解答:解:点Pa,m和Qb,m是抛物线y=2x2+4x3上的两个不

17、同点,因为点Pa,m和Qb,m点的纵坐标相等,所以,它们关于其对称轴对称,而抛物线y=2x2+4x3的对称轴为x=1;故有a+b=2故答案为:2点评:此题考查了函数图象上的点的坐标与函数解析式的关系,以及关于y轴对称的点坐标之间的关系13一元二次方程2x23x1=0与x2x+3=0的所有实数根的和等于考点:根与系数的关系 专题:计算题分析:先判断x2x+3=0没有实数解,那么两个方程的所有实数根的和就是2x23x1=0的两根之和,然后根据根与系数的关系求解解答:解:方程2x23x1=0的两根之和为x2x+3=0没有实数解,方程2x23x1=0与x2x+3=0的所有实数根的和等于故答案为点评:此

18、题考查了根与系数的关系:假设x1,x2是一元二次方程ax2+bx+c=0a0的两根时,x1+x2=,x1x2=14假设关于x的方程ax+m2+b=0的两个根1和4amb均为常数,a0,那么方程ax+m32+b=0是x1=2,x2=7考点:解一元二次方程-直接开平方法 分析:先利用直接开平方法得方程ax+m2+b=0的解为x=m,那么m+,=1,m,=2,再解方程ax+m22+b=0得x=3m,然后利用整体代入的方法得到方程ax+m32+b=0的根解答:解:解:解方程ax+m2+b=0得x=m,方程ax+m2+b=0a,m,b均为常数,a0的根是x1=1,x2=4,m+,=1,m,=4,解方程a

19、x+m32+b=0得x=3m,x1=31=2,x2=3+4=7故答案为x1=2,x2=7点评:此题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根15如下图的是二次函数y=ax2+bx+c的图象,某学霸从下面五条信息中:1a0;2b24ac0;3c1;42ab0;5a+b+c0准确找到了其中错误的信息,它们分别是125只填序号考点:二次函数图象与系数的关系 分析:由抛物线的开口方向判断a与0的关系;根据抛物线与x轴交点个数判断b24ac与0的关系;由抛物线与y轴的交

20、点判断c与1的关系;根据对称轴在x=1的左边判断2ab与0的关系;把x=1,y=0代入y=ax2+bx+c,可判断a+b+c0是否成立解答:解:1抛物线的开口向下,a0,故本信息正确;2根据图示知,该函数图象与x轴有两个交点,故=b24ac0;故本信息正确;3由图象知,该函数图象与y轴的交点在点0,1以下,所以c1,故本信息错误;4由图示,知对称轴x=1;又a0,b2a,即2ab0,故本信息错误;5根据图示可知,当x=1,即y=a+b+c0,所以a+b+c0,故本信息正确;故答案为125点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换

21、,根的判别式的熟练运用三、解答题1616分解方程5x12=35x1x2+2x=7考点:解一元二次方程-因式分解法;解一元二次方程-配方法 分析:先移项,再把等号左边因式分解,最后分别解方程即可;先在等号左右两边加上一次项系数的一半的平方,再进行配方,然后开方即可得出答案解答:解:5x12=35x1,5x1235x1=0,5x15x13=0,5x15x4=0,x1=,x2=;x2+2x=7,x2+2x+1=8,x+12=8,x+1=2,x1=1+2,x2=12点评:此题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用适宜的方法

22、17假设抛物线y=ax2+bx+c的顶点是A2,1,且经过点B1,0,求该抛物线的函数解析式考点:待定系数法求二次函数解析式 分析:设抛物线的解析式为y=ax+22+1,将点B1,0代入解析式即可求出a的值,从而得到二次函数解析式解答:解:设抛物线的解析式为y=ax+22+1,将B1,0代入y=ax+22+1得,a=,函数解析式为y=x+22+1,展开得y=x2x+所以该抛物线的函数解析式为y=x2x+点评:此题考查了待定系数法求函数解析式,知道二次函数的顶点式是解题的关键18假设3+是方程x2+kx+4=0的一个根,求另一根和k的值考点:根与系数的关系 分析:设方程的另一个根是m,根据韦达定

23、理,可以得到两根的积等于4,两根的和等于k,即可求解解答:解:设方程的另一个根是m,根据韦达定理,可以得到:3+m=4,且3+m=k,解得:m=3,k=6即方程的另一根为3,k=6点评:此题主要考查了一元二次方程的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0a0的两根时,x1+x2=,x1x2=19某工厂大门是一抛物线形水泥建筑物如图,大门地面宽AB=4米,顶部C离地面高度为4.4米现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米请通过计算,判断这辆汽车能否顺利通过大门?考点:二次函数的应用 专题:压轴题分析:此题只要计算大门顶部宽2.4米的局部离地

24、面是否超过2.8米即可如果设C点是原点,那么A的坐标就是2,4.4,B的坐标是2,4.4,可设这个函数为y=kx2,那么将A的坐标代入后即可得出y=1.1x2,那么大门顶部宽2.4m的局部的两点的横坐标就应该是1.2和1.2,因此将x=1.2代入函数式中可得y1.6,因此大门顶部宽2.4m局部离地面的高度是4.41.6=2.8m,因此这辆汽车正好可以通过大门解答:解:根据题意知,A2,4.4,B2,4.4,设这个函数为y=kx2将A的坐标代入,得y=1.1x2,E、F两点的横坐标就应该是1.2和1.2,将x=1.2代入函数式,得y1.6,GH=CHCG=4.41.6=2.8m,因此这辆汽车正好

25、可以通过大门点评:此题主要结合实际问题考查了二次函数的应用,得出二次函数式进而求出大门顶部宽2.4m局部离地面的高度是解题的关键20某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,假设商场平均每天盈利2100元,每件衬衫应降价多少元?考点:一元二次方程的应用 专题:销售问题分析:商场平均每天盈利数=每件的盈利售出件数;每件的盈利=原来每件的盈利降价数设每件衬衫应降价x元,然后根据前面的关系式即可列出方程,解方程即可求出结果解答:解:设每件衬衫应降价x元,

26、可使商场每天盈利2100元根据题意得45x=2100,解得x1=10,x2=30因尽快减少库存,故x=30答:每件衬衫应降价30元点评:需要注意的是:1盈利下降,销售量就提高,每件盈利减,销售量就加;2在盈利相同的情况下,尽快减少库存,就是要多卖,降价越多,卖的也越多,所以取降价多的那一种21如图,线段AB的长为2,C为线段AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形ACD和BCE1设DE的长为y,AC的长为x,求出y与x的函数关系式;2求出DE的最小值考点:二次函数的应用 分析:1设AC=x,那么BC=2x,然后分别表示出DC、EC,继而在RTDCE中,利用勾股定理

27、求出DE长度的表达式;2利用函数的性质进行解答即可解答:解:如图,设AC=x,那么BC=2x,ACD和BCE分别是等腰直角三角形,DCA=45,ECB=45,DC=x,CE=2x,DCE=90,故DE2=DC2+CE2=x2+2x2=x22x+2=x12+1,y=2y=当x=1时,DE取得最小值,DE也取得最小值,最小值为1点评:此题考查了二次函数最值及等腰直角三角形,难度不大,关键是表示出DC、CE,得出DE的表达式,还要求我们掌握配方法求二次函数最值22如图,一位篮球运发动在离篮圈水平距离4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,到达最大高度3.5m,然后准确落入篮框内篮圈中心离地面高度为3.05m1建立图中所示的直角坐标系,求抛物线所对应的函数关系式;2假设该运发动身高1.8m,这次跳投时,球在他头顶上方0.25m处出手问:球出手时,他跳离地面多高?考点:二次函数的应用 分析:1设抛物线的表达式为y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论