




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四版数值分析习题第一章绪论1. 设x0, x的相对误差为S ,求的误差.2. 设x的相对误差为2% ,求的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:4. 利用公式求下列各近似值的误差限:其中均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少6. 设按递推公式(n=1,2,)计算到若取 (五位有效数字),试问计算将有多大误差7. 求方程的两个根,使它至少具有四位有效数字(-.8. 当N充分大时,怎样求9. 正方形的边长大约为100 cm ,应怎样测量才能使其面积误差不超过1 cm
2、10. 设假定g是准确的,而对t的测量有土秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小.11. 序列满足递推关系(n=1,2,),若(三位有效数字),计算到时误差有多大这个计算过程 稳定吗12. 计算,取,利用下列等式计算,哪一个得到的结果最好13.,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式计算,求对数时误差有多大14. 试用消元法解方程组假定只用三位数计算,问结果是否可靠15. 已知三角形面积其中 c为弧度”且测量a , b , c的误差分别为证明面积的误差满足第二章插值法1. 根据定义的范德蒙行列式,令证明是n次多项式,它的根是,且2
3、. 当x= 1 , -1 , 2 时,f(x)= 0 , -3,4 , 求f(x)的二次插值多项式3. 给出f(x)=In x的数值表用线性插值及二次插值计算ln的近似值.xln x4. 给出cos x,0 w x w 90的函数表,步长h =1 =(1/60) ,若函数表具有 5位有效数 字,研究用线性插值求 cos x近似值时的总误差界5. 设,k=0,1,2,3,求.6. 设为互异节点(j =0,1,n),求证:i)ii)7. 设且,求证8. 在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函数表的步长应取多少9. 若,求及.10. 如果是次多项式,记,证明的
4、阶差分是次多项式,并且为正整数).11. 证明.12. 证明13. 证明14. 若有个不同实根,证明15. 证明阶均差有下列性质:i) 若,则;ii) 若,则.16.,求及.17. 证明两点三次埃尔米特插值余项是并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件”.20. 设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到.21. 设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误差.22
5、. 求在上的分段线性插值函数,并估计误差.23. 求在上的分段埃尔米特插值,并估计误差24. 给定数据表如下:试求三次样条插值并满足条件i)ii)25. 若,是三次样条函数,证明i) ;ii) 若,式中为插值节点,且,则.26. 编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式).第三章函数逼近与计算1. (a)利用区间变换推出区间为的伯恩斯坦多项式(b) 对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较.2. 求证:(a) 当时,.(b) 当时,.3. 在次数不超过6的多项式中,求在的最佳一致逼近多项式.4. 假设在上连续,求的零次最
6、佳一致逼近多项式5. 选取常数,使达到极小,又问这个解是否唯一6. 求在上的最佳一次逼近多项式,并估计误差7. 求在上的最佳一次逼近多项式.8. 如何选取,使在上与零偏差最小是否唯一9. 设,在上求三次最佳逼近多项式.10. 令,求.11试证是在上带权的正交多项式.12. 在上利用插值极小化求1的三次近似最佳逼近多项式.13. 设在上的插值极小化近似最佳逼近多项式为,若有界,证明对任何,存在常数、,使14. 设在上,试将降低到3次多项式并估计误差.15. 在上利用幕级数项数求的3次逼近多项式,使误差不超过.16. 是上的连续奇(偶)函数,证明不管是奇数或偶数,的最佳逼近多项式也是奇(偶)函数.
7、17. 求、使为最小.并与1题及6题的一次逼近多项式误差作比较.18. 、,定义问它们是否构成内积19. 用许瓦兹不等式估计的上界,并用积分中值定理估计同一积分的上下界,并比较其结果20. 选择,使下列积分取得最小值:.21. 设空间,分别在、上求出一个元素,使得其为的最佳平方逼近,并比较其结果.22. 在上,求在上的最佳平方逼近.23. 是第二类切比雪夫多项式,证明它有递推关系24. 将在上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把在上展成切比雪夫级数.26.用最小二乘法求一个形如的经验公式,使它与下列数据拟合,并求均方误差1925
8、31384427.观测物体的直线运动,得出以下数据时间(秒)0距离(米)010305080110求运动方程.28.在某化学反应里,根据实验所得分解物的浓度与时间关系如下时间0510152025303540455055浓度0用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图30. 编出改进FFT算法的程序框图.31. 现给出一张记录,试用改进FFT算法求出序列的离散频谱第四章数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1);(2);.2. 分别用梯形公式和辛普森公式计算下列积分:;(3) ;(4).3. 直
9、接验证柯特斯公式具有 5次代数精度.4. 用辛普森公式求积分并计算误差 5. 推导下列三种矩形求积公式:(1) ;(2) ;(3) .6. 证明梯形公式和辛普森公式当时收敛到积分7. 用复化梯形公式求积分,问要将积分区间分成多少等分,才能保证误差不超过(设不计舍入误差)8. 用龙贝格方法计算积分,要求误差不超过.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是,这里是椭圆的半长轴,是地球中心与轨道 中心(椭圆中心)的距离,记为近地点距离,为远地点距离,公里为地球半径,则.我国第一 颗人造卫星近地点距离公里,远地点距离公里,试求卫星轨道的周长.10. 证明等式试依据的值,用外推算法求的近似值.11
10、. 用下列方法计算积分并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12.用三点公式和五点公式分别求在,和处的导数值,并估计误差.的值由下表给出第五章常微分方程数值解法并与准确解相比较。1. 就初值问题分别导出尤拉方法和改进的尤拉方法的近似解的表达式,2. 用改进的尤拉方法解初值问题取步长h=计算,并与准确解相比较。3. 用改进的尤拉方法解取步长h=计算,并与准确解相比较。4. 用梯形方法解初值问题证明其近似解为并证明当时,它原初值问题的准确解。5. 利用尤拉方法计算积分在点的近似值。6. 取h=,用四阶经典的龙格一库塔方法求解下
11、列初值问题:1 )2 )7. 证明对任意参数t,下列龙格库塔公式是二阶的:8. 证明下列两种龙格一库塔方法是三阶的:1)2)9. 分别用二阶显式亚当姆斯方法和二阶隐式亚当姆斯方法解下列初值问题: 取计算并与准确解相比较。10. 证明解的下列差分公式 是二阶的,并求出截断误差的首项。11. 导出具有下列形式的三阶方法:12. 将下列方程化为一阶方程组:1)2)3)13. 取h=,用差分方法解边值问题14. 对方程可建立差分公式 试用这一公式求解初值问题 验证计算解恒等于准确解15. 取山=用差分方法解边值问题第六章 方程求根1. 用二分法求方程的正根,要求误差。2. 用比例求根法求在区间 0,1
12、 内的一个根,直到近似根满足精度时终止计算。3. 为求方程在附近的一个根,设将方程改写成下列等价形式,并建立相应的迭代公式。1 ),迭代公式;2),迭代公式;3),迭代公式。 试分析每种迭代公式的收敛性,并选取一种公式求出具有四位有效数字的近似根。4. 比较求的根到三位小数所需的计算量;1 )在区间 0,1 内用二分法;2)用迭代法,取初值。5. 给定函数,设对一切存在且,证明对于范围内的任意定数入,迭代过程均收敛于的根。6. 已知在区间 a,b 内只有一根,而当 axb 时,试问如何将化为适于迭代的形式将化为适于迭代的形式,并求x=(弧度)附近的根。7. 用下列方法求在附近的根。根的准确值=
13、1.,要求计算结果准确到四位有效数字。1)用牛顿法;2)用弦截法,取;3)用抛物线法,取。8. 用二分法和牛顿法求的最小正根。9. 研究求的牛顿公式证明对一切且序列是递减的。10. 对于的牛顿公式,证明收敛到,这里为的根。11. 试就下列函数讨论牛顿法的收敛性和收敛速度:1)2)12. 应用牛顿法于方程,导出求立方根的迭代公式,并讨论其收敛性。13. 应用牛顿法于方程,导出求的迭代公式,并用此公式求的值。14. 应用牛顿法于方程和,分别导出求的迭代公式,并求15. 证明迭代公式是计算的三阶方法。假定初值充分靠近根,求第七章 解线性方程组的直接方法1. 考虑方程组:(a) 用高斯消去法解此方程组
14、(用四位小数计算) ,(b) 用列主元消去法解上述方程组并且与 (a) 比较结果。2. (a)设A是对称阵且,经过高斯消去法一步后,A约化为证明A是对称矩阵。(b) 用高斯消去法解对称方程组:4. 设A为n阶非奇异矩阵且有分解式 A=LU,其中L为单位下三角阵,U为上三角阵,求证 A的所有顺序主子式均不为零。5. 由高斯消去法说明当时,贝U A=LU,其中L为单位下三角阵,U为上三角阵。6设A为n阶矩阵,如果称 A为对角优势阵。证明:若 A是对角优势阵,经过高斯消去法 一步后,A具有形式。7. 设A是对称正定矩阵,经过高斯消去法一步后,A约化为其中证明(1) A的对角元素( 2) A2 是对称
15、正定矩阵;( 3)(4) A的绝对值最大的元素必在对角线上;( 5)( 6)从( 2),( 3),( 5)推出,如果,贝对所有 k8. 设为指标为 k 的初等下三角阵,即(除第 k 列对角元下元素外,和单位阵 I 相同) 求证当时,也是一个指标为 k 的初等下三角阵,其中为初等排列阵。9. 试推导矩阵A的Crout分解A=LU的计算公式,其中 L为下三角阵,U为单位上三角阵。10. 设,其中 U 为三角矩阵。(a) 就U为上及下三角矩阵推导一般的求解公式,病写出算法。(b) 计算解三角形方程组的乘除法次数。(c) 设U为非奇异阵,试推导求的计算公式。11. 证明(a)如果A是对称正定阵,则也是
16、正定阵;(b)如果A是对称正定阵,则 A可唯一写成,其中L是具有正对角元的下三角阵。12. 用高斯约当方法求 A 的逆阵:13. 用追赶法解三对角方程组,其中14. 用改进的平方根法解方程组15. 下述矩阵能否分解为 LU (其中L为单位下三角阵,U为上三角阵)若能分解,那么分解 是否唯一16. 试划出部分选主元素三角分解法框图,并且用此法解方程组17. 如果方阵A有,则称A为带宽2t+1的带状矩阵,设 A满足三角分解条件,试推导的计 算公式,对1) ;2) .18. 设计算A的行范数,列范数,2-范数及F-范数。19. 求证(a) ,(b) 。20. 设 且非奇异,又设为上一向量范数,定义。
17、试证明是上的一种向量范数。21. 设为对称正定阵,定义试证明为上向量的一种范数。22. 设,求证。23. 证明:当且尽当x和y线性相关且时,才有。24. 分别描述中(画图)。25. 令是(或)上的任意一种范数,而P是任意非奇异实(或复)矩阵,定义范数,证明。26. 设为上任意两种矩阵算子范数,证明存在常数,使对一切满足27. 设,求证与特征值相等,即求证。28. 设 A 为非奇异矩阵,求证。29. 设 A 为非奇异矩阵,且,求证存在且有估计30. 矩阵第一行乘以一数,成为证明当时,有最小值。31. 设A为对称正定矩阵,且其分解为,其中,求证(a)(b)32. 设计算 A 的条件数。33. 证明
18、:如果 A 是正交阵,则。34. 设且为上矩阵的算子范数,证明第八章 解方程组的迭代法1. 设方程组 (a) 考察用雅可比迭代法 ,高斯- 塞德尔迭代法解此方程组的收敛性 ;(b) 用雅可比迭代法 , 高斯- 塞德尔迭代法解此方程组 ,要求当时迭代终止2. 设, 证明 : 即使级数也收敛3. 证明对于任意选择的 A, 序列收敛于零4 .设方程组迭代公式为求证 : 由上述迭代公式产生的向量序列收敛的充要条件是5. 设方程组(a) (b)试考察解此方程组的雅可比迭代法及高斯 - 塞德尔迭代法的收敛性。6. 求证的充要条件是对任何向量x ,都有7. 设,其中 A 对称正定,问解此方程组的雅可比迭代法
19、是否一定收敛试考察习题5(a) 方程组。8. 设方程组(a) 求解此方程组的雅可比迭代法的迭代矩阵的谱半径;(b) 求解此方程组的高斯塞德尔迭代法的迭代矩阵的谱半径;(c) 考察解此方程组的雅可比迭代法及高斯塞德尔迭代法的收敛性。9. 用SOF方法解方程组(分别取松弛因子)精确解要求当时迭代终止,并且对每一个值确定迭代次数。10. 用SOR方法解方程组(取=)要求当时迭代终止。11. 设有方程组,其中 A 为对称正定阵,迭代公式试证明当时上述迭代法收敛(其中) 。12. 用高斯塞德尔方法解,用记的第 i 个分量,且。(a) 证明 ;(b) 如果,其中是方程组的精确解,求证:其中(c) 设 A
20、是对称的,二次型证明 。(d) 由此推出,如果 A是具有正对角元素的非奇异矩阵,且高斯一塞德尔方法对任意初始向 量是收敛的,则 A是正定阵。13. 设A与B为n阶矩阵,A为非奇异,考虑解方程组其中。(a) 找出下列迭代方法收敛的充要条件(b) 找出下列迭代方法收敛的充要条件 比较两个方法的收敛速度。14. 证明矩阵对于是正定的,而雅可比迭代只对是收敛的。15. 设,试说明A为可约矩阵。16. 给定迭代过程,其中,试证明:如果 C的特征值,则迭代过程最多迭代n次收敛于方程组的解。17. 画出SOR迭代法的框图。18. 设A为不可约弱对角优势阵且,求证:解的SOR方法收敛。19. 设,其中A为非奇
21、异阵。(a) 求证为对称正定阵;(b) 求证。第九章 矩阵的特征值与特征向量计算1. 用幂法计算下列矩阵的主特征值及对应的特征向量:(a) , (b) , 当特征值有 3 位小数稳定时迭代终止。2. 方阵 T 分块形式为其中为方阵, T 称为块上三角阵,如果对角块的阶数至多不超过 2,则称 T 为准三角形形 式,用记矩阵 T 的特征值集合,证明3. 利用反幂法求矩阵的最接近于 6 的特征值及对应的特征向量。4. 求矩阵与特征值 4对应的特征向量。5. 用雅可比方法计算的全部特征值及特征向量,用此计算结果给出例3的关于p的最优值。6. (a)设A是对称矩阵,入和是A的一个特征值及相应的特征向量,
22、又设P为一个正交阵,使证明的第一行和第一列除了入外其余元素均为零。(b) 对于矩阵J入=9是其特征值,是相应于 9的特征向量,试求一初等反射阵P,使,并计算。7. 利用初等反射阵将正交相似约化为对称三对角阵。8. 设,且不全为零,为使的平面旋转阵,试推导计算第行,第 j 行元素公式及第 i 列,第 j 列元素的计算公式。9. 设是由豪斯荷尔德方法得到的矩阵,又设 y 是的一个特征向量。(a) 证明矩阵 A 对应的特征向量是;(b) 对于给出的 y 应如何计算 x10. 用带位移的QF方法计算(a) , (b) 全部特征值。11. 试用初等反射阵 A分解为QR其中Q为正交阵,R为上三角阵,数值分
23、析习题答案第一章 绪论习题参考答案1.( lnx )。2 。3. 有 5 位有效数字 ,有 2 位有效数字,有 4 位有效数字,有 5 位有效数字,有 2 位有效数字 。4. 。6 。7 ,。89 。10. ,故t增加时S的绝对误差增加,相对误差减小。11,计算过程不稳定 。12. ,如果令,则,的结果最好 。13. ,开平方时用六位函数表计算所得的误差为 ,分别代入等价公式中计算 可得,。14. 方程组的真解为 ,而无论用方程一还是方程二代入消元均解得,结果十分可靠。15.第二章 插值法习题参考答案2.3. 线性插值:取,则二次插值:取,则4. ,其中 . 所以总误差界5.当 时,取得最大值
24、6. i) 对在处进行 n 次拉格朗日插值,则有 由于,故有 .ii) 构造函数在处进行 n 次拉格朗日插值,有 插值余项为 ,由于 故有令即得 .7. 以 a, b 两点为插值节点作的一次插值多项式 据余项定理,由于故8. 截断误差 其中 则时取得最大值 由题意, 所以,9. 则可得 , ,则可得10. 数学归纳法证 当时,为 m1 次多项式; 假设 是 m-k 次多项式,设为,则 为 m-(k+1) 次多项式,得证。11. 右左12.13.14. 由于是的 n 个互异的零点,所以 对求导得则记则 由以上两式得15. i)ii) 证明同上。16.17.即均为的二重零点。因而有形式:作辅助函数
25、则由罗尔定理,存在使得类似再用三次罗尔定理,存在使得又可得即18. 采用牛顿插值,作均差表:一阶均差二阶均差00111210-1/2又由得所以19. 记贝U因为,所以在上一致连续。 当时,此时有由定义知当时,在上一致收敛于。20. 在每个小区间上表示为计算各值的C程序如下:#i nclude#i ncludefloat f(float x) return(1/(1+x*x);float I(float x,float afloat b)return(x-b)/(a-b)*f(a)+(x-a)/(b-a)*f(b);void mai n() int i;float x11,xc,xx;x0=-5
26、;prin tf(x0=%fn,x0);for(i=1;i=10;i+) xi=xi-1+1;prin tf(x%d=%fn,i,xi);for(i=0;i10;i+) xc=(xi+xi+1)/2;I(xc,xi,xi+1);printf(I%d=%fn,i+1,I(xc,xi,xi+1);for(i=0;i0, 0,则对任意,均有不等式。27. 若,则就有,可推出即,同理可以推出,综合这两点即可得。28. 。29. ,贝故存在,。30. ,当时,当时,当时,有最小值7。31. (a) ,(b),。32. ,。33.33. 。第八章解线性方程组的迭代法习题参考答案1. (a) Jacobi迭
27、代矩阵 特征方程为特征根均小于1, Jacobi迭代法收敛Gauss-Seidel迭代矩阵特征方程为特征根均小于1, Gauss-Seidel迭代法收敛(b) Jacobi迭代格式为其中B如上,迭代18次得Gauss-Seidel迭代格式为其中G如上,,迭代8次得。2. 证:,则故,因此,即级数收敛。3. 证: 设, 一方面, 另一方面, 因此,即序列收敛于零。4. 证:由已知迭代公式得迭代矩阵 则特征多项式为 解得 , 向量序列收敛的充要条件是 ,即 。5. (a) 谱半径, Jacobi 迭代法不收敛;矩阵 A 对称正定,故 Gauss-Seidel 迭代法收敛(b) 谱半径, Jacobi 迭代法收敛;谱半径, Gauss-Seidel 迭代法不收敛;6. 证:必要性 ,则 , 对任意向量,有 因而有 ,即。充分性 因对任何向量,都有,令,则 即当时,的任一列向量的极限为 A 的对应的列向量,因而有。7. A对称正定,Jacobi迭代法不一定收敛,如题 5(a)。8. (a) Jacobi 迭代矩阵的谱半径;(b) Gauss-Seidel 迭代矩阵的谱半径;(c) 两种方法的谱半径均小于 1,所以两种方法均收敛。事实上,对于方程组,矩阵 A为严格对角占优则Jacobi和Gauss-Seidel迭 代法均收敛。9. 取,迭代公式为 使
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 考点攻克人教版八年级上册物理声现象《声音的产生与传播》同步练习试题(解析版)
- 解析卷人教版八年级上册物理物态变化《汽化和液化》必考点解析试题(解析版)
- 加速康复外科理念在儿童肱骨髁上骨折手术时间选择的临床研究
- 考点解析人教版八年级上册物理声现象《声音的特性》定向攻克试题(含答案及解析)
- 钢结构现场安装验收方案
- 土方施工现场管理方案
- 2025年智能城市空中交通(UAM)布局策略与市场前景分析报告
- 解析卷-人教版八年级上册物理声现象《声音的产生与传播》专项练习试题(解析版)
- 舒伯特艺术歌曲《春之梦》的音乐特征与演唱分析
- 闪电哨声波散射系数自动提取算法及其应用
- 中医信息系统用户中医权限分级制度
- 2025年《数据化运营》课程标准
- 小红书营销人才认证考题
- 黄金回收协议书
- T/SHPTA 102-2024聚四氟乙烯内衬储罐技术要求
- 2025招商银行笔试题库及答案
- 2025年烟叶调制工(三级)技能等级认定理论考试题库(含答案)
- 航空服务艺术与管理专业介绍
- 新质生产力五要素
- 快递员合同协议
- 破产清算造价咨询合同协议
评论
0/150
提交评论