下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.信号检测与估计理论简答题1.维纳滤波器与卡尔曼滤波器的区别维纳滤波器:1)只用于平稳随机过程。2)该系统常称为最佳线性滤波器。它根据全部过去和当前的观测信号来估计信号的波形,它的解是以均方误差最小条件所得到的系统的传递函数H(Z)的形式给出的。3)信号和噪声是用相关函数表示的。卡尔曼滤波器:1)平稳随机过程和不平稳随机过程均适用。2)该系统常称为线性最优滤波器。它不需要全部过去的观测数据,可根据前一个的估计值和最近的观察数据来估计信号的当前值,它是用状态方程和递推方法进行估计的,其解是以估计的形式给出的。3)信号和噪声是用状态方程和测量方程表示的。2.解释白噪声情况下正交函数集的任意性设中,
2、噪声n(t)是零均值、功率谱密度为的白噪声,其自相关函数。于是,任意取正交函数集的展开系数和(k=1,2,)的协方差为当时,协方差,这说明,在n(t)是白噪声的条件下,取任意正交函数集对平稳随机过程(k=1,2,)之间都是互不相关的。这就是白噪声条件下正交函数集的任意性。3.请说明非随机参量的任意无偏估计量的克拉美-罗不等式去等号成立的条件和用途克拉美-罗不等式或当且仅当对所有的x和都满足时,不等式去等号成立。其中k是任意非零常数。用途:当不等式去等号的条件成立时,均方误差取克拉美-罗界,估计量是无偏有效的。以此,随机参量下的克拉美-罗不等式和取等号的条件可用来检验随机参量的任意无偏估计量是否
3、有效。若估计量无偏有效,则其均方误差可由计算克拉美-罗界求得。4.简述最小的均方误差估计与线性最小均方误差估计的关系。在贝叶斯估计中讨论的随机矢量的最小均方误差估计,估计矢量可以是观测矢量x的非线性函数,而线性最小均方误差估计,估计矢量 一定是观测矢量x的线性函数。所以,尽管二者都要求估计得均方误差最小,但前者可以是非线性估计,而后者仅限于线性估计,二者是不一样的。但是,如果被估计矢量与线性观测模型下的观测噪声矢量n是互不相关的高斯随机矢量,那么观测矢量x与被估计矢量是联合高斯分布的。在这种情况下,已知x和的前二阶距知识与已知它们的概率密度函数是一样的,因此,线性最先均方误差估计与最小均方误差
4、估计是相同的,即线性最小均方误差估计也是所有估计中的最佳估计。5.解释奈曼-皮尔逊准则解的存在性关于奈曼-皮尔逊准则解得存在性,我们结合下图从概念上加以说明,图中,第一种判决域的划分为R01和R11保证P1(H1|H0)=,并有相应的P1(H1|H1);第二种判决域的划分为R02和R12,扔保证P2(H1|H0)= ,也有相应的P2 (H1|H1);第三种判决域的划分为R03和R13,还是保证P3 (H1|H0)= ,它也有相应的P3 (H1|H1)。这就是说,原则上判决域R0和R1有无限多种划分方法,它们都可以保证错误判决概率P(H1|H0)= ,但每种划分所对应的正确判决概率P(H1|H1
5、)一般是不一样的。既然这样,其中至少有一种判决域R0,R1的划分,既能保证P(H1|H0)= ,又能使P(H1|H1)最大,这意味着奈曼-皮尔逊准则的解是存在的。6、请解释匹配滤波器的适应性 匹配滤波器岁振幅和时延参量不同的新号具有适应性,而对频移新号不具有适应性。若输入信号s(t)的匹配滤波器的系统函数为H(w)=kS* (w)e-jwt0,那么,它对所有与s(t)波形相同,仅振幅A和时延 不同的信号s1(t)=As(t- )而言,也是匹配的。设信号s(t)的频谱函数为S(w),则信号s1 (t)=As(t-)的频谱函数S1(w)=AS(w)e,因而与信号s1(t),相匹配的滤波器的系统函数
6、为H1(w)=kS (w)e=kAS1*(w)e =AH(w)e ,式中,t0是匹配滤波器H(w)输出功率信噪比达到最大的时刻;t1是匹配滤波器H1(w)输出功率信噪比达到最大的时刻。 如果输出达到最大的时刻都选在信号的末尾,由于信号s1(t)相对信号s(t)在时间上延迟了,所以t1相应地比t0在时间上延迟了 。即t1=t0+。这样,式1变为H1(w)=AH(w).这一结果说明,两个匹配滤波器的系数函数之间,除了一个表示相对放大量得系数A之外,它们的频率特性是完全一样的。所以,与信号s(t)相匹配的滤波器的系统函数H(w)对于信号s1(t)=As(t-)来说,也是匹配的,只不过最大输出功率信噪
7、比出现的时刻延迟了。 匹配滤波器对频移信号不具有适应性。设输入信号为s(t)的匹配滤波器的系统函数为H(w)=kS*(w)e.若滤波器的频移输入信号s2(t)=s(t)e其频谱函数为S2(w)=S(w+v),其中,v为信号的频移。信号s2(t)的匹配滤波器的系统函数为H2(w)=kS2*(w)e=kS* (w+v)e.显然,当v0时,H2(w)的频率特性和H(w)的频率特性是不一样的。所以匹配滤波器对频移信号不具有适应性。7 信号检测与信号估计有何区别信号检测:研究在噪声干扰背景下,所关心的信号是属于哪种状态的最佳判决的问题。信号估计:研究在噪声干扰背景中,通过对信号的观测,如何构造带估计参数
8、的最佳估计量。区别:信号检测问题主要就是根据收到的信号在两个假设之中选择其中一个假设的问题。信号估计问题主要是求最优估计算子,即设计一个能处理各种观察数据而产生最优估计的滤波器。8 最小平均错误概率准则,最大后验概率准则,极小极大化准则,奈曼皮尔逊准则他们之间的区别是什么?(1)最小平均误差概率准则是使平均错误概率最小的检测准则,当选择代价因子C00=C11=0,C10=C01=1时,(正确判决不付出代价,错误判决代价相同),平均代价C恰好是平均错误概率P,最小平均错误概率准则是贝叶斯准则的特例。(2)按最小平均代价的贝叶斯准则在C10-C00=C01-C11的条件下,就成为最大后验概率准则(
9、3)采用贝叶斯准则,除了给定各种判决的代价因子Cij外,还必须知道假设H0和假设H1为真的先验概率P(H0)和P(H1)。当预先无法确定各个假设的先验概率P(j)时,就不能应用叶贝斯准则。而极小化极大化准则是在已经给定代价因子Cij,但无法确定先验概率P(Hj)的条件下的一种信号检测准则。(4)既不知先验概率P(Hj),也无法对各种判决概率P(H1|H0)和P(H1|H1)且希望错误判决概率P(H1|H0)尽可能小,而正确判决概率P(H1|H1)尽可能的大时,采用奈曼皮尔逊准则(N-P)准则。9 什么是虚警概率?什么是漏报概率? S x H1 P(x|H1) H2 P(x|H0) 当假设H0为真而判决为H1,即本来无信号而判为有信号,成为虚警:P(H1|H0)为虚
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国家管网集团2026届高校毕业生招聘考试参考题库(浓缩500题)及参考答案详解(综合题)
- 2026秋季国家管网集团福建公司高校毕业生招聘笔试备考试题(浓缩500题)及一套参考答案详解
- 2026国网江西省电力公司高校毕业生提前批招聘笔试参考题库浓缩500题及答案详解(典优)
- 2025国网湖南省电力校园招聘(提前批)笔试模拟试题浓缩500题及答案详解(名师系列)
- 国家管网集团2026届高校毕业生招聘考试参考题库(浓缩500题)附答案详解(考试直接用)
- 2026国网江苏省电力校园招聘(提前批)笔试模拟试题浓缩500题完整答案详解
- 2026国家管网集团广西公司秋季高校毕业生招聘笔试参考题库(浓缩500题)含答案详解(巩固)
- 2025国网天津市高校毕业生提前批招聘(约450人)笔试模拟试题浓缩500题及答案详解(基础+提升)
- 2026国家管网集团高校毕业生招聘考试参考题库(浓缩500题)及答案详解【网校专用】
- 2025国网内蒙古电力校园招聘(提前批)笔试模拟试题浓缩500题附答案详解(能力提升)
- 国防教育军事训练
- 检验科SOP文件 程序文件范本
- 存货投资成本合同协议
- 2025-2030中国电动轮椅行业市场深度调研及发展趋势与投资战略研究报告
- 医疗机构廉政警示教育
- 静配中心2025年终总结
- 8A#楼 室外电梯平台防护架搭设方案
- 私域运营年终总结
- 第三章人类社会及其发展规律
- 火灾原因分析及事故案例
- 技术开发合同补充协议
评论
0/150
提交评论