




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实例实例:一块长方形的金属板,四个顶点的坐:一块长方形的金属板,四个顶点的坐标是标是(1,1),(5,1),(1,3),(5,3)在坐标原点在坐标原点处有一个火焰,它使金属板受热假定板上处有一个火焰,它使金属板受热假定板上任意一点处的温度与该点到原点的距离成反任意一点处的温度与该点到原点的距离成反比在比在(3,2)处有一个蚂蚁,问这只蚂蚁应沿处有一个蚂蚁,问这只蚂蚁应沿什么方向爬行才能最快到达较凉快的地点?什么方向爬行才能最快到达较凉快的地点?问题的问题的实质实质:应沿由热变冷变化最骤烈的方:应沿由热变冷变化最骤烈的方向(即梯度方向)爬行向(即梯度方向)爬行一、问题的提出一、问题的提出 讨论函
2、数讨论函数 在一点在一点p沿某一方沿某一方向的变化率问题向的变化率问题),(yxfz 二、方向导数的定义二、方向导数的定义oyxlp xyp引射线引射线内有定义,自点内有定义,自点的某一邻域的某一邻域在点在点设函数设函数lppuyxpyxfz)(),(),( ).(),(,puplyyxxplx 上的另一点且上的另一点且为为并设并设为为的转角的转角轴正向到射线轴正向到射线设设 (如图)(如图) |pp,)()(22yx ),(),(yxfyyxxfz 且且当当 沿着沿着 趋于趋于 时,时,p pl ),(),(lim0yxfyyxxf , z 考虑考虑是否存在?是否存在?.),(),(lim0
3、 yxfyyxxflf 沿沿着着x轴轴负负向向、y轴轴负负向向的的方方向向导导数数是是 yxff ,.的方向导数的方向导数沿方向沿方向则称这极限为函数在点则称这极限为函数在点在,在,时,如果此比的极限存时,如果此比的极限存趋于趋于沿着沿着当当之比值,之比值,两点间的距离两点间的距离与与函数的增量函数的增量定义定义lpplpyxppyxfyyxxf 22)()(),(),( 记为记为定理如果函数定理如果函数),(yxfz 在点在点),(yxp是可微分是可微分的,那末函数在该点沿任意方向的,那末函数在该点沿任意方向 l l 的方向导数都的方向导数都存在,且有存在,且有 sincosyfxflf ,
4、 其中其中 为为x轴到方向轴到方向 l l 的转角的转角证明证明由于函数可微,则增量可表示为由于函数可微,则增量可表示为)(),(),( oyyfxxfyxfyyxxf 两边同除以两边同除以,得到得到cossin )(),(),(oyyfxxfyxfyyxxf 故有方向导数故有方向导数 ),(),(lim0yxfyyxxf .sincos yfxf lf例例 1 1 求求函函数数yxez2 在在点点)0 , 1(p处处沿沿从从点点 )0 , 1(p到到点点)1, 2( q的的方方向向的的方方向向导导数数.解解; 1)0, 1(2)0, 1( yexz, 22)0, 1(2)0, 1( yxey
5、z所求方向导数所求方向导数)4sin(2)4cos( lz.22 解解 sin)1 , 1(cos)1 , 1()1 , 1(yxfflf 由方向导数的计算公式知由方向导数的计算公式知,sin)2(cos)2()1 , 1()1 , 1( xyyx sincos),4sin(2 故故(1)当)当4 时,时,方方向向导导数数达达到到最最大大值值2;(2)当当45 时时,方方向向导导数数达达到到最最小小值值2 ;(3)当)当43 和和47 时,时,方向导数等于方向导数等于 0.对于三元函数对于三元函数),(zyxfu ,它在空间一点,它在空间一点),(zyxp沿着方向沿着方向 l的方向导数的方向导
6、数 ,可定义,可定义为为,),(),(lim0 zyxfzzyyxxflf 推广可得三元函数方向导数的定义推广可得三元函数方向导数的定义( 其中其中222)()()(zyx ) 同理:当函数在此点可微时,那末函数在该点同理:当函数在此点可微时,那末函数在该点沿任意方向沿任意方向 l的方向导数都存在,且有的方向导数都存在,且有.coscoscos zfyfxflf 设设方方向向 l 的的方方向向角角为为 ,cos x,cos y,cos z三、梯度的概念三、梯度的概念?:最快最快沿哪一方向增加的速度沿哪一方向增加的速度函数在点函数在点问题问题p sincosyfxflf sin,cos, yfx
7、feyxgradf ),(,cos| ),(| yxgradf 当当1),(cos( eyxgradf时,时,lf 有有最最大大值值.设设jie sincos 是是方方向向 l上上的的单单位位向向量量,由方向导数公式知由方向导数公式知 函数在某点的梯度是这样一个向量,它的函数在某点的梯度是这样一个向量,它的方向与取得最大方向导数的方向一致方向与取得最大方向导数的方向一致,而它的模为而它的模为方向导数的最大值梯度的模为方向导数的最大值梯度的模为 22| ),(| yfxfyxgradf.结论结论),(yxfz 在几何上在几何上 表示一个曲面表示一个曲面曲面被平面曲面被平面 所截得所截得cz ,)
8、,( czyxfz所得曲线在所得曲线在xoy面上投影如图面上投影如图oyx2),(cyxf1),(cyxfcyxf),(等高线等高线),(yxgradf梯度为等高线上的法向量梯度为等高线上的法向量p 三元函数三元函数),(zyxfu 在空间区域在空间区域 g 内具有内具有一阶连续偏导数,则对于每一点一阶连续偏导数,则对于每一点gzyxp ),(,都可定义一个向量都可定义一个向量(梯度梯度).),(kzfjyfixfzyxgradf 类似于二元函数,此梯度也是一个向量,类似于二元函数,此梯度也是一个向量,其方向与取得最大方向导数的方向一致,其模其方向与取得最大方向导数的方向一致,其模为方向导数的
9、最大值为方向导数的最大值.梯度的概念可以推广到三元函数梯度的概念可以推广到三元函数解解 由梯度计算公式得由梯度计算公式得kzujyuixuzyxgradu ),(,6)24()32(kzjyix 故故.1225)2 , 1 , 1(kjigradu 在在)0 ,21,23(0 p处梯度为处梯度为 0.1、方向导数的概念、方向导数的概念2、梯度的概念、梯度的概念3、方向导数与梯度的关系、方向导数与梯度的关系(注意方向导数与一般所说偏导数的(注意方向导数与一般所说偏导数的区别区别)(注意梯度是一个(注意梯度是一个向量向量)四、小结四、小结.),(最快的方向最快的方向在这点增长在这点增长梯度的方向就
10、是函数梯度的方向就是函数yxf讨讨论论函函数数22),(yxyxfz 在在)0 , 0(点点处处的的偏偏导导数数是是否否存存在在?方方向向导导数数是是否否存存在在?思考题思考题xfxfxzx )0 , 0()0 ,(lim0)0,0(.|lim0 xxx 同理:同理:)0,0(yz yyy |lim0故两个偏导数均不存在故两个偏导数均不存在.思考题解答思考题解答沿沿任任意意方方向向,zyxl 的的方方向向导导数数, )0 , 0(),(lim0)0,0(fyxflz 1)()()()(lim22220 yxyx 故故沿沿任任意意方方向向的的方方向向导导数数均均存存在在且且相相等等.一、一、 填
11、空题填空题: :1 1、 函数函数22yxz 在点在点)2 , 1(处沿从点处沿从点)2 , 1(到点到点 )32 , 2( 的方向的方向导数为的方向的方向导数为_._.2 2、 设设xyzyxzyxf 22232),(zyx623 , , 则则 )0 , 0 , 0(gradf_._.3 3、 已知场已知场,),(222222czbyaxzyxu 沿沿则则u场的梯度场的梯度方向的方向导数是方向的方向导数是_._.4 4、 称向量场称向量场a为有势场为有势场, ,是指向量是指向量a与某个函数与某个函数 ),(zyxu的梯度有关系的梯度有关系_._.练练 习习 题题三三、 设设vu,都都是是zyx,的的函函数数, ,vu,的的各各偏偏导导数数都都存存在在且且连连续续, ,证证明明: :ugradvvgraduuvgrad )(四四、 求求222222czbyaxu 在在点点),(000zyxm处处沿沿点点的的向向径径0r的的方方向向导导数数, ,问问cba,具具有有什什么么关关系系时时此此方方向向导导数数等等于于梯梯度度的的模模? ?二、求函数二、求函数)(12222byaxz 在点在点)2,2(ba处沿曲线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年液态感光固化油墨项目建议书
- 2026届上海市南模中学化学高一第一学期期末达标检测试题含解析
- 2025年临床研究服务合作协议书
- 2025年地(水)面效应飞机合作协议书
- 2025年低辐射中空玻璃项目建议书
- 2025年厚膜工艺电源项目合作计划书
- 2025年贵金属钎、焊料项目合作计划书
- 2025年多用客房车项目合作计划书
- 2025年医院发生火灾的应急演练脚本(2篇)
- 2025年医疗(安全)不良事件报告制度
- 艺术设计专业教学标准(高等职业教育专科)2025修订
- 保密检查培训课件
- 2026届贵州省六校联盟高三高考联考卷(一)化学及答案
- 2025年七一党课-作风建设永远在路上学习教育党课
- 黄山义警队管理制度
- 十五五畜牧兽医行业发展规划
- 2025-2030中国排毒养颜茶行业发展分析及发展趋势预测与投资风险研究报告
- 2025年全国高考数学真题全国2卷
- 沪港通测试题及答案
- 2025年新能源发电并网政策对行业发展影响分析报告
- 实验室生物安全会议记录内容
评论
0/150
提交评论