




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、10/23/20211第三章:第三章:信源编码(一)离散信源无失真编码3.1 信源及其分类信源及其分类3.2 离散无记忆(简单)信源的等长编离散无记忆(简单)信源的等长编码码3.3 离散无记忆(简单)信源的不等长离散无记忆(简单)信源的不等长编码编码3.4 最佳不等长编码最佳不等长编码3.5 算术编码和算术编码和lz编码编码10/23/202123.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码(顺序地叙述以下的概念)(1)不等长编码的优越性不等长编码的优越性 总体上减少码字的长度。(2)不等长编码的特殊问题不等长编码的特殊问题 唯一可译性,或者叫做可识别性。对于一个
2、码,如果存在一种译码方法,使任意若干个码字所组成的字母串只能唯一地被翻译成这几个码字所对应的事件序列。这个码就被称为是唯一可译的。解决方案:适当地编码,使得每个码字都具有识别标记。(注解:一个唯一可译的、码字长度不超过n的d元码,其码字个数小于d(dn-1)/(d-1)个。这是因为两个码字c(1)和c(2) 连接成的字母串c(1)c(2) 不能是码字)10/23/202133.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码平均码字长度。设信源随机变量u的概率分布为ak, p(ak), k=1k,事件ak对应的码字长度为nk,则平均码字长度为希望 小。解决方案:概率大的
3、事件用短码字。实时译码和容量限制。kkkkapnn1)(n10/23/202143.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码唯一可译性的两种解决方法唯一可译性的两种解决方法定义定义3.3.2(p51) 若事件与码字一一对应;每个码字的开头部分都是一个相同的字母串;这个字母串仅仅出现在码字的开头,不出现在码字的其它部位,也不出现在两个码字的结合部。则称这个字母串为逗号,称此码为逗点码逗点码。定义定义3.3.4(p51) 若事件与码字一一对应;每个码字都不是另一个码字的开头部分(字头)。则称此码为异字头码异字头码。10/23/202153.3 离散无记忆(简单)信离
4、散无记忆(简单)信源的不等长编码源的不等长编码注解注解逗点码显然是唯一可译的,识别码字的方法为:见到逗号就识别为一个码字的开始。见到逗号就识别为一个码字的开始。异字头码也是唯一可译的,识别码字的方法为:见到一个码字就识别为一个码字。见到一个码字就识别为一个码字。10/23/202163.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码例例 观察表3.3.1(p51)。码a不是唯一可译的。码b不是唯一可译的。码c是唯一可译的,识别码字的方法为:见“0”或“111”就是一个码字的结束。实际上,码c是异字头码。码d是唯一可译的,识别码字的方法为:见“0”就是一个码字的开始。实
5、际上,码d是逗点码,其中“0”是逗号。码c不是逗点码。码d不是异字头码。码c的平均码长比码d的平均码长小:码c的平均码长为10.5+20.25+30.125+30.125=1.75;码d的平均码长为10.5+20.25+30.125+40.125=1.875。10/23/202173.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码异字头码的第一种构造方法:异字头码的第一种构造方法:shannon-fano编码法编码法(d元编码,字母表为元编码,字母表为0, 1, , d-1) (1)将源随机变量的事件按概率从大到小排成一行。(2)将此行切分为d段,分别赋予标号“0”到
6、“d-1”,称为1级标号。(3)将每个非空段再切分为d段,分别赋予标号“0”到“d-1”,称为2级标号。(4)将每个非空段再切分为d段,分别赋予标号“0”到“d-1”,称为3级标号。10/23/202183.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码如此一直到每个段均含有至多一个事件为止。此时,一个事件的码字就是这个事件所在的段的标号序列,从1级标号到末级标号。为了使平均码长小,每次切分段时应使d段的概率尽可能相近。(注解:当然可以把“切分段”操作换为“任意分组”操作,使d组的概率尽可能相近。这样可以使平均码长更小。但是,这不是一种有效的操作。 )10/23/20
7、2193.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码异字头码的第二种构造方法:异字头码的第二种构造方法:huffman编码法编码法(d元编码,字母表为元编码,字母表为0, 1, , d-1)(0)如果源随机变量的事件的个数k不是(d-1)的倍数加1,则添加若干0概率事件使得事件的个数是(d-1)的倍数加1 。(1)将概率最小的d个事件分别赋予标号“0”到“d-1”。(2)将这d个事件合并为一个事件,其概率为这d个事件概率之和。重复(1)-(2),直到事件的个数等于d。将这d个事件分别赋予标号“0”到“d-1”。编码完毕。此时,一个事件的码字是这个事件从最后标号开始
8、到最先标号为止的标号序列。(当然要去掉那些0概率事件和它们的标号序列) 10/23/2021103.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码(为什么shannon-fano码和huffman码都是异字头码?请看p58图3.4.1,p58图3.4.2。这些图都是树,称为码树,码树上的每个码字都在树梢。如果不是异字头码,则有的码字就不在树梢,而在中间节点。)定理定理3.3.1(kraft不等式,p53) 设信源随机变量共有k个事件。则:各码字长度分别为n1、n2、nk的d元异字头码存在的充分必要条件是11kknkd10/23/2021113.3 离散无记忆(简单)信
9、离散无记忆(简单)信源的不等长编码源的不等长编码证明 不妨设n1n2nk。则各码字长度分别为n1、n2、nk的d元异字头码存在;当且仅当:存在这样一个d叉树,树上有n1级、n2级、nk级树梢;当且仅当:nk级d叉满树满树有不存在上下关系不存在上下关系的n1级、n2级、nk级节点;当且仅当: nk级d叉满树满树的树梢数量不小于;21kkkknnnnnndddknnnddd211当且仅当:10/23/2021123.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码定理定理3.3.2(p53) (设信源随机变量共有k个事件)。则:一个唯一可译的、各码字长度分别为n1、n2、n
10、k的d元不等长码存在的充分必要条件是11kknkd10/23/2021133.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码定理定理3.3.3(p54)duhnlog)(1log)(duhn任一唯一可译的d元不等长码总满足存在唯一可译的d元不等长码满足10/23/2021143.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码证明 设信源随机变量u的概率分布为如果唯一可译的d元不等长码的码字长度为则kkqqqaaau212101log) 1(loglnlogloglog1loglog)(111111kknkkknkkkknkkkknkkkkkk
11、kkkkkkkdeqdqeqdqeqdqdnqqqdnuhkknnnaaa212110/23/2021153.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码因此 。另一方面,取n1、n2、nk,则:由于 ,存在码字长度为 的唯一可译的d元不等长码。duhnlog)()log)(1,(duhnkkdqknk,则若kkdqdkknkn1,) 1(111kkkkknqdkkknnnaaa212110/23/2021163.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码但此时dndnqdqqquhkkkkkknkkkkkkloglog) 1(log1
12、log)(11111log)(duhn因此10/23/2021173.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码定理3.3.3的结论的推广(p55) 现在对信源随机向量ul=(u1u2ul)做唯一可译的d元不等长码。此时ul的事件的个数为kl。则任一唯一可译的d元不等长码总满足存在唯一可译的d元不等长码满足dulhduhunlllog)(log)()(1log)(1log)()(dulhduhunll10/23/2021183.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码重新定义平均码长:任一唯一可译的d元不等长码总满足存在唯一可译的d
13、元不等长码满足duhnlog)(lduhn1log)(lunnl)(10/23/2021193.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长编码源的不等长编码定义编码速率r和编码效率分别为 任一唯一可译的d元不等长码总满足存在唯一可译的d元不等长码满足dnldunrlloglog)()(uhr lduhrlog)(注解注解 不等长编码与等长编码具有相似的性质:当不等长编码与等长编码具有相似的性质:当l增大时,对增大时,对ul的编的编码可以使用更短的平均码长,因而更加节省码可以使用更短的平均码长,因而更加节省编码速率。但编码速率。但节省节省编码编码速率的下限是速率的下限是h(u)。ruh)(10/23/2021203.3 离散无记忆(简单)信离散无记忆(简单)信源的不等长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖南中南大学湘雅三医院国家妇产区域医疗中心(建设)生殖医学中心胚胎实验室技术员招聘1人考前自测高频考点模拟试题及答案详解(网校专用)
- 2025广东中山市教体系统事业单位招聘事业单位人员79人(第四期)考前自测高频考点模拟试题及答案详解(典优)
- 2025江西南昌动物园百花园管理所招聘3人模拟试卷及答案详解(易错题)
- 2025年垃圾焚烧发电项目发展计划
- 2025年卧式自动翻洗过滤机项目合作计划书
- 转让抚养权协议书范本5篇
- 2025年DVD播放设备项目发展计划
- 图书馆志愿者活动总结13篇
- 厉行节约演讲稿(15篇)
- 2025年临沂郯城县教育系统部分事业单位公开招聘教师(13名)模拟试卷及一套参考答案详解
- 2025年10月自考00315当代中国政治制度试题及标准答案
- 2024年南昌市公安局东湖分局招聘警务辅助人员考试真题
- 4.1 认识厘米 课件 人教版数学二年级上册
- 人身意外险理赔细则手册
- 高三试卷:2025届浙江省新阵地联盟高三10月联考历史试题
- 2025公务员考试时事政治题库(含答案)
- 2025年度云南省成人高考专升本《教育理论》高频考题库汇编及答案
- 保温人员安全培训课件
- 驾校教练安全知识培训课件
- 中文版匹兹堡睡眠质量指数量表 (PSQI)1-2-10
- gogo版开心学英语(三年级到六年级)全部单词
评论
0/150
提交评论