




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2013年普通高等学校招生全国统一考试(浙江卷)数学(理科)乐享玲珑,为中国数学增光添彩!免费,全开放的几何教学软件,功能强大,好用实用一选择题1已知是虚数单位,则a b. c. d.2设集合,则a b. c. d.3已知为正实数,则a. b. c. d.4已知函数,则“是奇函数”是的a充分不必要条件 b. 必要不充分条件 c. 充分必要条件 d.既不充分也不必要条件5某程序框图如图所示,若该程序运行后输出的值是,则a. b. c. d.开始s=1,k=1ka?s=s+k=k+1输出s结束是否(第5题图)6已知,则a. b. c. d.7设是边上一定点,满足,且对于边上任一点,恒有。则a. b
2、. c. d.8已知为自然对数的底数,设函数,则a当时,在处取得极小值 b当时,在处取得极大值 c当时,在处取得极小值 d当时,在处取得极大值 9如图,是椭圆与双曲线的公共焦点,分别是,在第二、四象限的公共点。若四边形为矩形,则的离心率是oxyabf1f2(第9题图)a. b. c. d.10在空间中,过点作平面的垂线,垂足为,记。设是两个不同的平面,对空间任意一点,,恒有,则a平面与平面垂直 b. 平面与平面所成的(锐)二面角为 c. 平面与平面平行 d.平面与平面所成的(锐)二面角为 二、填空题11设二项式的展开式中常数项为,则_。12若某几何体的三视图(单位:cm)如图所示,则此几何体的
3、体积等于_。43233正视图侧视图俯视图(第12题图)13设,其中实数满足,若的最大值为12,则实数_。14将六个字母排成一排,且均在的同侧,则不同的排法共有_种(用数字作答)15设为抛物线的焦点,过点的直线交抛物线于两点,点为线段的中点,若,则直线的斜率等于_。16中,,是的中点,若,则_。17设为单位向量,非零向量,若的夹角为,则的最大值等于_。3、 解答题18 在公差为的等差数列中,已知,且成等比数列。(1)求; (2)若,求19设袋子中装有个红球,个黄球,个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分。(1)当时,从该袋子中任取(有放回,且每球取到的机会均等)2个
4、球,记随机变量为取出此2球所得分数之和,.求分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量为取出此球所得分数.若,求20如图,在四面体中,平面,.是的中点, 是的中点,点在线段上,且.(1)证明:平面;(2)若二面角的大小为,求的大小.abcdpqm(第20题图)21如图,点是椭圆的一个顶点,的长轴是圆的直径.是过点且互相垂直的两条直线,其中交圆于两点,交椭圆于另一点(1)求椭圆的方程; (2)求面积取最大值时直线的方程.xoybl1l2pda(第21题图)22已知,函数(1)求曲线在点处的切线方程;(2)当时,求的最大值。参考答案一、选择题1b【解析】原式,所以选b;
5、2c【解析】如图1所示,由已知得到。所以选c3d【解析】此题中,由。所以选d;4b【解析】当为奇函数时,所以不是充分条件;反之当 时,函数是奇函数,是必要条件,所以选b。【考点定位】充分条件的判断和三角函数的奇偶性性质知识点;函数,若是奇函数,则;若是偶函数,则;函数,若是奇函数,则;若是偶函数,则;充分和必要条件判断的三种方法(1)定义法(通用的方法): 若,则是的充分不必要条件;若,则是的必要不充分条件;若,则是的充分必要条件;若,则是的既不充分又不必要条件;(2)集合判断法:若已知条件给的是两个集合问题,可以利用此方法判断:设条件和对应的集合分别是若,则是充分条件;若,则是的充分不必要条
6、件;若,则是必要条件;若,则是的必要不充分条件;若,则是的充分必要条件;若,则是的既不充分又不必要条件;(3)命题真假法:利用原命题和真命题的真假来判断:设若则为原命题,若原命题真,逆命题假,则是的充分不必要条件;若原命题假,逆命题真,则是的必要不充分条件;若原命题真,逆命题真,则是的充分必要条件;若原命题假,逆命题假,则是的既不充分又不必要条件;5a【解析】由图可知,即程序执行到,当时程序运行结束,即最后一次运行;所以选a6c解:由已知得到:,所以,所以选c;7d解:利用特殊值法可以解决,如或即可求出答案,所以选d;8c解:当时,且,所以当时,函数递增;当时,函数递减;所以当时函数取得极小值
7、;所以选c;9d解:由已知得,设双曲线实半轴为,由椭圆及双曲线的定义和已知得到:,所以双曲线的离心率为,所以选d;10a解:设所以,由已知得到:于,于,于,于,且恒成立,即与重合,即当时满足;如图2所示:11 解:由,由已知得到:,所以,所以填-10;1224 解:由已知得此几何体的直观图是一个底面是直角三角形且两直角边分别是3,4高是5的直三棱柱在上面截去一个三棱锥,三棱锥从一个顶点出发的三条棱两两垂直,底面边长分别是3,4高是3,如图3所示,红色为截去的三棱锥,所以体积为;132 解:此不等式表示的平面区域如下图4所示:,当时,直线平移到a点时目标函数取最大值,即;当时,直线平移到a或b点
8、时目标函数取最大值,可知k取值是大于零,所以不满足,所以,所以填2;14480 解:对特殊元素进行分类讨论即可,即在第1,2,3,4,5,6,位置上讨论,其中在第1和第6位置上,在第2和第5位置上,在第3和第4位置上结果是相同的,在第1位置上有种,在第2位置上有,在第3位置上有,所以共有,所以填;15 解:由已知得到:,设,由,所以,由已知得到,所以答案是16 解:如图5所示,设,由已知得到,在中,由余弦定理得到:;所以填;172 解:由已知得到: ,设的最大值为4,所以答案是2;18解:()由已知得到: ;()由(1)知,当时,当时,当时,所以,综上所述:;19解:()由已知得到:当两次摸到
9、的球分别是红红时,此时;当两次摸到的球分别是黄黄,红蓝,蓝红时,此时;当两次摸到的球分别是红黄,黄红时,此时;当两次摸到的球分别是黄蓝,蓝黄时,此时;当两次摸到的球分别是蓝蓝时,此时;所以的分布列是:23456p()由已知得到:有三种取值即1,2,3,所以的分布列是:123p所以:,所以。20解:证明()方法一:如图6,取的中点,且是中点,所以。因为是中点,所以;又因为()且,所以,所以面面,且面,所以面;方法二:如图7所示,取中点,且是中点,所以;取的三等分点,使,且,所以,所以,且,所以面;()如图8所示,由已知得到面面,过作于,所以,过作于,连接,所以就是的二面角;由已知得到,设,所以,在中,所以在中, ,所以在中;21解:()由已知得到,且,所以椭圆的方程是;()因为直线,且都过点,所以设直线,直线,所以圆心到直线的距离为,所以直线被圆所截的弦; 由,所以,所以,当时等号成立,此时直线22解:()由已知得:,且,所以所求切线方程为:,即为:;()由已知得到:,其中,当时,(1)当时,所以在上递减,所以,因为;(2)当,即时,恒成立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 健身设施建设 合同范本
- 关于团结的演讲稿(汇编5篇)
- 关于团结的演讲稿范文(5篇)
- 智慧城市建设对环境影响评价
- 2025年生命体征试题及答案
- 2025年沈阳市小学考试试题及答案
- 2025年山西省太原市事业单位教师招聘考试教育类《综合知识》真题库及答案
- 2025年山东省招聘储备教师教育理论、教育基础知识+英语自测试题及答案
- CN223041083U 一种具有密封结构的防漏式睫毛膏管 (广东品凡派塑胶实业有限公司)
- CN120277914A 基于多源声波数据的动态温度场实时重建方法及系统 (郑州轻工业大学)
- 信息技术-开学第一课(共17张课件)
- 先进制造技术 课件 第一章 先进制造技术概论
- 实际投资额审计报告模板
- 湖南省衡阳市2022-2023学年六年级下册数学期末测试试卷(含答案)
- 农村干部任期经济责任审计所需资料
- 商场超市火灾防范措施
- PVC地板卷材施工方案
- 能源电力行业团队建设工作方案
- 黄褐斑的护理查房
- 《生态环保循环经济》课件
- 《中国老年骨质疏松症诊疗指南(2023)》解读-
评论
0/150
提交评论