国家公务员考试数量题_第1页
国家公务员考试数量题_第2页
国家公务员考试数量题_第3页
国家公务员考试数量题_第4页
国家公务员考试数量题_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数量题型行测数量:数字组合例9、由1、2、3组成没有重复数字的所有三位数之和是多少?()a、1222b、1232c、1322d、1332结论:由a,b,c三个数字组成所有三位数的和=2×(各数字之和)×111,能被111整除;由a,b,c,d四个数字组成所有四位数的和=3!×(各数字之和)×1111,能被1111整除;由a,b,c,d,e五个数字组成所有五位数的和=4!×(各数字之和)×11111,能被11111整除因此,这些三位数之和能被111整除。选d尾数判定法是一种利用目标答案的尾数计算的方法,包括传统意义上的尾数法、多位尾数法

2、、除法尾数法等。其基本依据是:和、差、积的尾数就是尾数的和、差、积的尾数。下面我们来看四个简单的例子:行测数量:尾数判定法例题:例1173×173×173-162×162×162()。a.926183b.936185c.926187d.926189答案d解析尾数法:3×3×3-2×2×2è9,选择d.以上的例题给大家介绍的是传统意义上的尾数判定法,但是在实际的解题过程中,会出现利用后几位尾数才可以确定最终答案的情况,因此就要使用多位尾数法,如例题2.例22002×20032003-2003

3、15;20022002的值是()。a.60b.0c.60d.80答案b解析两位尾数法:原式的末两位数字=02×03-03×02=00,选择b.下面我们看一个乘方尾数问题,在遇到乘方尾数问题时,要牢记口诀,即:底数留个位,指数除以4留余数(余数为0,则看作4):例3的末位数字是()a.1b.3c.7d.9答案a解析9的乘方尾数呈9、1、9、1、9、1的规律变化,1998是偶数,选择a在尾数判定法中,若算式中含有除法,则需要应用除法尾数法,如例题4:例4(873×477-198)÷(476×874199)的值是()a.1b.2c.3d.4答案a解析

4、根据除法尾数法,原式可化为,代入选项,b、c、d可被排除,选择a.需要特别说明的是,除法尾数法是利用除式当中分子与分母的尾数判断商的尾数的方法。除法尾数法与一般的尾数法不一样,必须通过逆向考察才能获得,下面运用一个简单例子来作阐释。一个分式通过计算尾数如果可以得到如下形式:,那么其商的尾数我们无法迅速完全确定;但根据乘法逆向考察知:,因此我们将选项的尾数代入即可判断,它的尾数只可能是3或8.【例题】6,7,5,8,4,9,()a.5b.10c.3d.4【例题】-1,6,25,62,()a.87b.105c.123d.132【例题】232,364,4128,52416,()a.64832b.62

5、4382c.723654d.87544【例题】4,5,7,9,13,15,()a.17b.19c.18d.20【例题】3,3,4,5,7,7,11,9,()()a.13,11b.16,12c.18,11d.17,13c【解析】奇数项和偶数项分别为公差为-1和1的等差数列,因此所填数字应为4-1=3。c【解析】原数列可以化为13-2,23-2,33-2,43-2,(53-2),因此答案为c。a【解析】数字的内部拆分后,2/3/2,3/6/4,4/12/8,5/24/16,(6/48/32),答案为a。b【解析】各项减2后为质数列,故下一项为17+2=19。c【解析】奇数项和偶数项分别为和数列和等

6、差数列,下两项为7+11=18和9+2=11,答案为c。行测数量:不定方程法解数学运算题例题精讲:例题1:工人甲一分钟可生产螺丝3个或螺丝帽9个,工人乙一分钟可生产螺丝2个或螺丝帽7个。现在两人各花了20分钟,共生产螺丝和螺丝帽134个。问生产的螺丝比螺丝帽多几个?a34个b32个c30个d28个解析:此题答案为a。设甲用x分钟生产螺丝,乙用y分钟生产螺丝,x、y<20。3x+9(20-x)+2y+7(20-y)=134列出方程6x+5y=186化为标准形式5y的尾数只可能是0或5,则6x的尾数为6或1。6x的尾数不可能是1,所以6x的尾数是6。1-20范围内,x只可能是1、6、11、1

7、6。确定解的范围代入x=1,y=36;x=6,y=30;x=11,y=24;x=16,y=18。由于y<20,所以y=18,其他都要舍去。螺丝有3×16+2×18=84个,螺丝帽有134-84=50个,螺丝比螺丝帽多84-50=34个。根据解的范围进行试探例题3:共有20个玩具交给小王手工制作完成。规定,制作的玩具每合格一个得元,不合格一个扣元,未完成的不得也不扣。最后小王共收到56元,那么他制作的玩具中,不合格的共有()个。a2b3c5d7解析:此题答案为a。设合格的有x个,不合格的有y个。则5x-2y=56,x、y<20。5x=56+2y,5x的尾数为0或5

8、,56+2y是偶数,则其尾数只能为0。结合选项可知y=2或7。确定解的范围当y=2时,x=12,共完成x+y=12+2=14个,符合题意;当y=7时,x=14,x+y>20,不符题意,排除。根据解的范围进行试探例题4:有271位游客欲乘大、小两种客车旅游,已知大客车有37个座位,小客车有20个座位。为保证每位游客均有座位,且车上没有空座位,则需要大客车的辆数是()。a1辆b3辆c2辆d4辆解析:此题答案为b。设大客车x量,小客车y量,依题意37x+20y=271。20y的尾数是0,37x的尾数必然是1,所以x的尾数是3,结合选项知选b。例题6:某单位有宿舍11间,可以住67人,已知每间小

9、宿舍住5人,中宿舍住7人,大宿舍住8人,则小宿舍间数是a.6b.7c.8d.9解析:此题答案为a。设小宿舍有x间,中宿舍有y间,大宿舍有11-x-y间。依题意5x+7y+8(11-x-y)=67,得到3x+y=21。化为标准形式因为x、y均是大于0的整数,所以x7。直接选a。确定解的范围行测数量:和差倍比三种常见问题分析一、和差倍问题和差倍问题主要有以下三种:解题时,要注意和(差)与倍数的对应关系。如果不是整数倍,想办法转化得到整数倍,再应用公式。在情况比较复杂时,采用方程法思路往往比较简单。例题1:水果店运来的西瓜个数是哈密瓜个数的4倍,如果每天卖130个西瓜和36个哈密瓜,那么哈密瓜卖完后

10、还剩下70个西瓜。该店共运来西瓜和哈密瓜多少个?a.225b.720c.790d.900解析:此题答案为d。此题为和差倍问题(2)差倍关系。卖之前具有倍数关系,如果哈密瓜每天卖36个,西瓜每天卖36×4=144个时,二者恰好同时卖完,现在按照“130个西瓜和36个哈密瓜”,每天少卖144-130=14个西瓜,共剩下70个,所以共卖了70÷14=5天,共有5×(130+36)+70=900个瓜。例题2:三个单位共有180人,甲、乙两个单位人数之和比丙单位多20人,甲单位比乙单位少人,求甲单位的人数?a.48人b.49人c.50人d.51人解析:此题答案为b。设甲单位

11、为x人,则乙单位为(x+2)人,丙单位为(x+x+2-20),有x+x+2+(x+x+2-20)=180,解得x=49人。名师点评此题为和差倍问题(3)和差关系。根据“甲、乙两个单位人数之和比丙单位多20人”,由和差关系公式可知,甲、乙两个单位人数之和为(180+20)÷2=100人;根据“甲单位比乙单位少2人”,再次利用和差关系公式,甲单位有(100-2)÷2=49人。二、比例问题解决比例问题的关键是找准各分量、总量、以及各分量与总量之间的比例关系,再根据分量÷总量=所占比例,分量÷所占比例=总量求解。解题时,有时根据题干数字特征,尤其是遇到含分数、百

12、分数的题,可结合选项排除。例题4:(2011·国家)某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人。问今年男员工有多少人?a.329b.350c.371d.504解析:此题答案为a。设去年男员工为x人,女员工为y人,则有x+y=830,(1-6%)x+(1+5%)y=830+3,解得x=350,所以今年男员工有350×94%=329人。名师点评利用倍数排除。由今年男员工人数比去年减少6%,可知男员工数为去年的94%,代入选项发现只有329除以94%是整数,答案选a。三、连比问题例题5:a、b、c三人玩游戏,开始时三人

13、的钱数之比为765,游戏结束后三人的钱数之比变为654,其中有一个人赢了12元,则这个人原来有多少元钱?a.420b.480c.360d.300行测数量:利用数的整除性快解数学运算题一般来说,和差倍比问题,特别是遇到含百分数、分数和比例的问题,可以根据题目中的倍数关系,利用整除性解题。一些多位数问题,也可以利用数的整除性绕过复杂的分析,直接排除错误选项来解题。例题:某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人。问今年男员工有多少人?a.329b.350c.371d.504解析:此题答案为a。今年男员工人数比去年减少6%,则设去年有男员

14、工x人,去年女员工有(830-x)人。根据今年员工数=去年员工数+3,可得(1-6%)x+(1+5%)(830-x)=830+3解得x=350,则今年男员工有(1-6%)x=94%x=329人,也可根据今年男员工比去年少直接选a。利用整除性快解:考虑到员工数是整数这个特点,可以直接从今年男员工数是去年的94%入手,选项中只有329除以94%是整数。故直接选a。利用数的整除性解题,国家公务员考试网()专家提醒考生往往还需要用下面的几个性质:性质1:传递性。a能被b整除,b能被c整除a能被c整除。【示例】72能被9整除,9能被3整除,所以72能被3整除性质2:可加减

15、性。如果a能被c整除,b能被c整除,则a+b、a-b均能被c整除。【示例】56能被8整除,16能被8整除,56+16=72、56-16=40均能被8整除性质3:如果a能被c整除,m为任意整数,则a?m也能被c整除。【示例】39能被13整除,15为整数,39×15也能被13整除。性质4:如果a能被b整除,a能被c整除,且b和c互质,则a能被b?c整除。【示例】162能被2、9整除,2和9互质,所以162能被2×9=18整除。性质5:如果a?b能被c整除,且a和c互质,则b能被c整除。【示例】2×9=18能被3整除,2和3互质,所以9能被3整除。例题1:一个三位自然数

16、正好等于它各位数字之和的18倍,则这个三位自然数是:a.999b.476c.387d.162解析:此题答案为d。这个三位数是18的倍数,即这个三位数能被18整除,又18能被2和9整除,根据整除性质1,这个数一定能被9和2整除。a、c两项不能被2整除,排除;b项4+7+6=17,不能被9整除,排除;只有d项符合。例题2:有一食品店某天购进了6箱食品,分别装着饼干和面包,重量分别为8、9、16、20、22、27公斤。该店当天只卖出一箱面包,在剩下的5箱中饼干的重量是面包的两倍,则当天食品店购进了()公斤面包。a44b45c50d52解析:此题答案为d。由“剩下的5箱中饼干的重量是面包的两倍”,说明

17、剩下的饼干和面包的重量和应该是3的倍数,而6箱食品的总重量8+9+16+20+22+27=102为3的倍数,根据整除性质2,卖出的一箱面包重量也为3的倍数,则重量只能是9或27公斤。若卖出面包重量为9公斤,则剩下的面包重量为(102-9)÷3=31公斤,题干数据不能凑出31,排除。若卖出面包重量为27公斤,则剩下的面包重量为(102-27)÷3=25公斤,正好有25=9+16满足条件,则面包总重量为27+25=52公斤。行测数量:排列组合快速解题方法1.特殊定位法排列组合问题中,有些元素有特殊的要求,如甲必须入选或甲必须排第一位;或者有些位置有特殊的元素要求,如第一位只能站

18、甲或乙。此时,应该优先考虑特殊元素或者特殊位置,确定它们的选法。2.反面考虑法有些题目所给的特殊条件较多或者较为复杂,直接考虑需要分许多类,而它的反面却往往只有一种或者两种情况,此时我们先求出反面的情况,然后将总情况数减去反面情况数就可以了。例题:从6名男生、5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同选法?a240b.310c.720d.10804.归一法排列问题中,有些元素之间的排列顺序“已经固定”,这时候可以先将这些元素与其他元素进行排列,再除以这些元素的全排列数,即得到满足条件的排列数。例题:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目

19、,有多少种安排方法?a.20b.12c.6d.4解析:此题答案为a。方法一:“添进去2个新节目”后,共有5个节目,因此,此题相当于“安排5个节目,其中3个节目相对顺序确定,有多少种方法?”由于“3个节目相对顺序确定”,可以直接采用归一法。方法二:也可以用插空法,即将2个新节目插入原来3个节目和两端之间形成的空处。需要注意的是,由于插入的2个新节目可以相邻,所以应逐一插入。将第一个新节目插入原有3个节目和两端之间形成的4个空处,有4种选择;这时,4个节目形成5个空,再将第二个新节目插入,有5种选择。根据乘法原理,安排方法共有4×5=20种。行测数量:图形形式数字推理我们知道,无论是何种

20、形式的图形形式的数字推理,其考查的规律都是关于数字之间的运算关系,所以解题时分析也就围绕运算关系展开。一、分析四周数字之和与中心数字的大小关系如果四周数字之和小于中心数字,则四周数字的运算过程很有可能涉及乘法运算,否则,就应该优先考虑减法或除法运算。这种分析虽然过程简单,但有利于确定大致的方向。例题:解析:此题答案为b。从前两个图形来看,四周数字之和远大于中心数字,这时需要将四周数字分组,优先考虑它们之间的减法或除法运算。第一个图形中有24、12、6,第二个图形中有8、8、16,这些数都为除法创造了条件。若在第一个图形中,24÷12;则在第二个图形中,8÷16,得到的是小数

21、,由此否定这条路。即应该是24÷6,得到4,和中心数字6相差2,2可由12和10得到,此题便得到了解决。第一个图形中,24÷61210=6;第二个图形中,8÷8169=8;第三个图形中,32÷82012=(12)。二、分析图形中最大的数在数字推理中,几个数字运算得到另一个数字,通常都是几个较小的数运算得到一个较大的数。如果几个较小的数字运算得到一个远大于它们的数,则一定要通过乘法等使数字增大的运算。因此我们可以以图形中最大的数字作为突破口,寻找运算关系。例题1:a11b16c18d19解析:此题答案为d。图形中最大的数字是第三个图形中68,它由6、2、4

22、三个数字运算得到,68远大于这三个数字的和,考虑乘法运算,三个数字的积是6×2×4=48,仍然小于68,由此确定应该考虑使数字变化更快的乘方运算。68附近的多次方是64,考虑到这些,这个题目就不难解决了。三、分析图形中的质数质数由于只能被1和它本身整除,它们在运算过程中,更多的时候,要涉及加法或减法运算,这是我们分析图形中质数的原因。例题1:解析:此题答案为b。前两个图形中的质数较多,在第一个图形中7、13等质数都大于中心数字6;在第二个图形中23、29都大于中心数字18;显然四周数字运算时,涉及到这些质数的倍数的可能性不大,这些质数更大可能是要进行加法、减法运算。按照这种

23、思路,不难确定此题规律。第一个图形中,(1513)×(74)=6;第二个图形中,(85)×(2923)=18;第三个图形中,(62)×(1512)=(12)。例题2:解析:此题答案为a。第一个图形中有质数7,中心数字是15,它不是7的倍数,则7在运算过程中极有可能涉及加法或减法;第二个图形中,中心数字23是质数,它由3、5、8运算得到,运算过程中也极有可能涉及加法或减法。此题三个数运算得到第四个数,这些简单的运算关系相信大家通过数列形式数字推理的学习,已经很熟悉了。第一个图形中,2×47=15;第二个图形中,3×58=23;第三个图形中,6&#

24、215;42=(26)。行测数量:算式计算高分技巧一、公式法公式法即直接利用公式进行解题,公务员考试中常用的计算公式如下表:二、提取公因式法在一个算式中,如果各项都含有共同的因式,可以把这个因式提取出来作为多项式的一个公因式,写到括号外面。其实质是逆用乘法分配律:(a+b)×c=a×c+b×c。公务员考试中,在运用提取公因式法的时候,通常要将式子先进行适当的因式分解,才能提取出其中的公因式。例题1:(2011?浙江)2011×201+201100201.1×2910的值为:a.20110b.21010c.21100d.21110解析:此题答案为

25、a。算式的三个项都可以化成含有2011的式子。原式=2011×201+2011×1002011×291=2011×(201100291)=2011×10=20110。例题2:2009×200820082008×20092009?a0b1c2d3解析:此题答案为a。两个式子都可分解为含有2008和2009两个因式的式子。原式=2009×2008×10001-2008×2009×10001=0。三、拆项补项法即指把多项式的某一项拆开或加上互为相反数的两项,使原式便于提取公因式或利用公式法化

26、简,从而达到简化计算的目的。四、裂项相消法裂项相消法是将数列中的每项(通项)分解,使之能消去一些项,最终达到简化计算的目的。下面是一些常见的通项的裂项方式:行测数量:快速攻克计算问题一、算式计算二、数列问题等差数列:从第二项起,每一项与前一项之差为一个常数的数列。该常数称为公差,记为d。等比数列:从第二项起,每一项与前一项之商为一个非零常数的数列。该常数称为公比,记为q。例题2:an是一个等差数列,a3+a7-a108,a11-a44,则数列前13项之和是:.82解析:由等差数列对称公式可得,a10-a3a11-a4,那么(a3+a7-10)+(11-a4)=a7-(10

27、-a3)+(11-a4)=a7=12;由等差数列中项求和公式得:s13=a7×13=156,选择c。三、平均数与不等式算数平均数:所有数据之和除以数据个数所得的商,用公式表示:几何平均数:n个正实数乘积的n次方根,用公式表示为:不等式属于方程的衍生,方程用“=”连接两个等价的解析式,不等式由“”、“”、“”、“”连接两个解析式。行测考试中主要借不等式确定未知量的取值范围,或是利用均值不等式求极值。均值不等式:任意n个正数的算数平均数总是不小于其几何平均数,即行测数量:立体几何问题全攻略一、立体图形的表面积和体积例题1:一个长方体模型,所有棱长之和为72,长、宽、高的比是432,则体积

28、是多少?7219212896解析:此题答案为b。所有棱长(长、宽、高各4条)之和为72,即长+宽+高=72÷4=18,已知长、宽、高的比是432,所以长为8、宽为6、高为4,体积=8×6×4=192。例题2:一个长方体形状的盒子长、宽、高分别为20厘米、8厘米和2厘米,现在要用一张纸将其六个面完全包裹起来,要求从纸上剪下的部分不得用作贴补,请问这张纸的大小可能是下列哪一个?a长25厘米、宽17厘米b长26厘米、宽14厘米c长24厘米、宽21厘米d长24厘米、宽14厘米解析:此题答案为c。该长方体的表面积为2×(20×8+20×2+8&

29、#215;2)=432平方厘米,这张纸的面积一定要大于长方体的表面积,选项中只有c项符合。如图所示,实线部分可折叠得到题中盒子,说明这张纸能将这个盒子完全包裹起来。二、立体图形的切割和拼接问题考试中题目出现的求切割和拼接后的面积、表面积和体积变化问题,遵循以下原则:立体图形切割,则总表面积增加了截面面积的2倍;拼接则总表面积减小了截面面积的2倍。例题:将一个表面积为36平方米的正方体等分成两个长方体,再将这两个长方体拼成一个大长方体,则大长方体的表面积是:a24平方米b30平方米c36平方米d42平方米解析:此题答案为d。正方体每个面的面积为36÷6=6平方米。将正方体平分以后,表面

30、积增加6×2=12平方米;拼成大长方体后,表面积减少2×(6÷2)=6平方米,因此大长方体的表面积为36+12-6=42平方米。快速突破:在切割和拼接过程中,体积不变。根据体积一定,越趋近于球,表面积越小,可知大长方体的表面积大于36平方米,只有d项符合。三、物体浸水问题物体浸入水中,水面会上升,水的总体积不变,因此水的变化高度=浸没体积÷容器底面积(行测考试中容器一般为规则立体图形)即物体浸入前后,水的体积变化等于该物体浸入水中的体积。例题:现有边长1米的一个木质正方体,已知将其放入水里,将有0.6米浸入水中。如果将其分割成边长0.25米的小正方体,并

31、将所有的小正方体都放入水中,直接和水接触的表面积总量为:a3.4平方米b9.6平方米c13.6平方米d16平方米解析:此题答案为c。边长为1米的正方体可以分割成1÷(0.25)3=64个边长为0.25米的小正方体。如果把边长1米的木质正方体放入水里,与水直接接触的表面积为1×1+0.6×1×43.4平方米。由于小立方体浸入水中的总体积与正方体相同,所以每个小正方体浸入水中的比例与立方体相同。因为小正方体的边长是正方体的1/4,所以其与水直接接触的面积是大正方体的1/16,其总共与水直接接触的总面积为64×3.4×1/163.4

32、5;413.6平方米。四、立方体染色问题假设将一个立方体切割成边长为原来的1/n的小立方体,在表面染色,则(1)三个面被染色的是8个顶角的小立方体;(2)两个面被染色的是12(n-2)个在棱上的小正方体;(3)只有一个面被染色的是6(n-2)2个位于外表面中央的小正方体。(4)都没被染色的是(n-2)3个不在表面的小立方体。例题:一个边长为8的正立方体,由若干个边长为1的正立方体组成,现在要将大立方体表面涂漆,请问一共有多少个小立方体被涂上了颜色?a.296b.324c.328d.384解析:此题答案为a。边长为8的正立方体共有8×8×8=512个边长为1的小正立方体,不在

33、表面的小正立方体共有6×6×6=216个,所以被染色的小正方体的个数为512-216=296。五、异面直线所成角行测数量:植树问题的公式及解题流程在公务员考试中,植树问题难度不大,只要利用对应的公式便可以很容易得出答案。一、植树问题的类型与对应公式例如:在一周长为100米的湖边种树,如果每隔5米种一棵,共要种多少棵树?这样在一条“路”上等距离植树就是植树问题。在植树问题中,“路”被分为等距离的几段,段数=总路长÷间距,总路长=间距×段数。根据植树路线的不同以及路的两端是否植树,段数与植树的棵数的关系式也不同,下面就从不封闭路线的植树和封闭路线植树来一一说

34、明。(1)不封闭植树:指在不封闭的直线或曲线上植树,根据端点是否植树,还可细分为以下三种情况:两端都植树如上图,两个端点都植树,树有6棵,段数为5段,即有植树的棵数=段数+1,结合段数=总路长÷间距,则:棵数=总路长÷间距+1,总路长=(棵数1)×间距。两端都不植树如上图,两个端点都不植树,可知植树的棵数=段数1,结合段数=总路长÷间距,则:棵数=总路长÷间距1,总路长=(棵树+1)×间距。只有一端植树如上图,只有一个端点植树,可知植树的棵数=段数,结合段数=总路长÷间距,则:棵数=总路长÷间距,总路长=棵数

35、15;间距。(2)封闭植树:指在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。所以棵数总路长÷间距,总路长=棵数×间距。为方便记忆,将植树问题的公式归纳如下表:二、植树问题解题流程例题1:圆形溜冰场的一周全长150米。如果我们沿着这一圈每隔15米安装一盏路灯,一共需要安装几盏路灯?a.11b.10c.9d.8解析:此题答案为b。圆形溜冰场一周,说明是封闭植树型。判断类型棵数即路灯盏数=总路长÷间距=150÷15=10。套用公式例题2:从图书馆到百货大楼有25根电线杆,相邻两根电线杆的距离都是30米,从图书馆

36、到百货大楼距离是多少?(图书馆和百货大楼门口都有一根电线杆)a.750b.720c.680d.700解析:此题答案为b。“图书馆和百货大楼门口都有一根电线杆”,说明是“两端都植树”型。判断类型要求“图书馆到百货大楼”的距离,即求总路长。根据棵数=总路长÷间距+1,有总路长=(棵数-1)×间距=(25-1)×30=720米。套用公式例题3:两棵柳树相隔165米,中间原本没有任何树,现在这两棵树中间等距种植32棵桃树,第1棵桃树到第20棵桃树间的距离是:a.90米b.95米c.100米d.前面答案都不对解析:此题答案为b。“现在这两棵树中间等距种植32棵桃树”,说明是

37、“两端都不植树”型。判断类型现不知道桃树与桃树之间的距离,因此需要先求间距。根据棵数=总路长÷间距-1,有间距=总路长÷(棵数+1)=165÷(32+1)=5米。套用公式那么第1棵到第20棵间的距离为5×(201)=95米。行测数量:快速解答两种多次相遇问题路程=速度×时间,时间=路程÷速度,速度=路程÷时间。上述公式是行程问题的核心公式,简单的行程问题,比较容易从题干中找出速度、时间、路程三个量中的已知量后利用核心公式求解。与基本的行程问题相比,相遇问题涉及两个或多个运动物体,解题过程则较为复杂。在相遇问题中,有相遇路程=

38、速度和×时间,时间=相遇路程÷速度和,速度和=相遇路程÷时间。对较复杂的行程问题,必须弄清物体运动的具体情况:如运动的方向(相向,同向),出发的时间(同时,不同时),出发的地点(同地,不同地),运动的路线(封闭,不封闭),运动的结果(相遇、追及、交错而过、相距多少)等。多次相遇问题就属于比较复杂的一类问题。解决这类问题的关键是找出一共行驶了多少个全程,从而找出三量中的路程。在过程复杂时,可借助线段图分析。按照路线的不同,国家公务员考试网()专家把多次相遇问题可分为直线多次相遇问题与环形路线多次相遇问题:一、直线多次相遇问题直线多次相

39、遇问题的结论:从两地同时出发的直线多次相遇问题中,第n次相遇时,路程和等于第一次相遇时路程和的(2n-1)倍;每个人走的路程等于他第一次相遇时所走路程的(2n1)倍。例题1:甲、乙两车同时从a、b两地出发相向而行,两车在距b地64千米处第一次相遇。相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回。途中两车在距a地48千米处第二次相遇,问两次相遇点相距多少千米?a.24b.28c.32d.36解析:此题答案为c。直线二次相遇问题,具体运动过程如下图所示。由上图可知,第一次相遇时,两个车走的总路程为a、b之间的距离,即1个ab全程。第二次相遇时甲、乙两车共走了3个ab全程,即两车

40、分别走了第一次相遇时各自所走路程的3倍。可知乙车共走了64×3=192千米,ab间的距离为19248=144千米,故两次相遇点相距1444864=32千米。例题2:甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5米,乙每分钟游52.5米。两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。如果不计转向的时间,则从出发开始计算的1分50秒内两人共相遇了多少次?a.5b.2c.4d.3甲、乙在同一点出发,反向而行,当甲乙第一次相遇时,共跑了一圈。则甲路程+乙路程=跑道周长;第二次相遇时,把他们第一次相遇的地点作为起点来看,第二次相遇时,他们又共同跑了一圈,即第二次相遇时甲乙总共跑

41、了2圈;归纳可知,每相遇一次,甲、乙就共同多跑一圈,因此相遇的次数就等于共同跑的圈数。得到公式甲总路程+乙总路程=跑道周长×n(n为相遇次数)从而可得结论:从同一点出发,反向行驶的环形路线问题中,初次相遇所走的路程和为一圈。如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍。例题1:老张和老王两个人在周长为400米的圆形池塘边散步。老张每分钟走9米,老王每分钟走16米。现在两个人从同一点反方向行走,那么出发后多少分钟他们第二次相遇?a.16b.32c.25d.20解析:此题答案为b。环形多次相遇问题,每次相遇所走的路程和为一圈。因此第二次相遇时

42、,两人走过的路程和刚好是池塘周长的2倍,相遇时间=路程÷速度和,即400×2÷(916)=32分钟。例题2:如图所示,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇,则这个圆形场地的周长为多少米?2013公务员数字推理习题精解(4)【例题】2,3,7,16,32,(),93a43b.51c.57d.63【例题】96,57,39,23,16,4,()a.12b.24c.36d.6【例题】2,10,30,68,130,222,()a.261b.290c.324d

43、.350【例题】22,28,40,58,82,()a.120b.112c.113d.92【例题】34,36,35,18,(),9,37,()a.36,3b.36,4.5c.34,6d.37,7【解析】c。逐差后,每两项之差为12、22、32、42、(52)、(62)【解析】a。和数列变式,96-57=39,39-23=16,16-4=(12)。【解析】d。多次方数列变式,各项分别为13+1,23+2,33+3,43+4,53+5,63+6,(73+7).【解析】b。二级等差数列,相邻两项作差后分别为6、12、18、24、(30),因此,(112)=82+30。【解析】b。间隔组合数列,奇数项为34、35、(36)、37,为连续自然数列,偶数项为36、18、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论