




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三线八角 教学目标1使学生理解三线八角的意义,并能从复杂图形中识别它们2通过三线八角的特点的分析,培养学生抽象概括问题的能力3使学生认识图形是由简到繁组合而成,培养学生形成基本图形结构的能力教学重点和难点三线八角的意义是重点,能在各种变式的图形中找出这三类角既是重点,也是难点教学过程设计一、从学生原有的认识结构提出问题教师提问:1两条直线相交后产生了几个角?每两个角之间的关系是什么?(除平角外,产生四个角,对顶角相等,邻补角互补)2三条直线之间也可以有什么样的位置关系?(可以让学生用手中的铅笔表示直线)在学生回答的基础上,教师打出投影,(四种情况,如图2-30) (1)三条直线都没
2、有交点(2)两条直线平行被第三条直线所截(3)三条直线两两相交,有三个交点(4)三条直线交于一点上节课是对相交的两条直线所形成的四个角进行研究,今天我们就对三条直线相交后形成的八个角如图2-30(3)进行研究,简称为:三线八角(板书课题)二、三线八角的意义1教师用谈话方式提出问题:在图2-31中,l1和l3(或l2和l3)所形成的四个角是有公共顶点的,而每两个角之间的关系从位置来分,可分为两类:对顶角和邻补角,而上面四个角和下面四个角是没有公共顶点的,那么上面的一个与下面的一个又有什么样的位置关系呢?这就是下面所要研究的问题2分析特点,形成概念(1)同位角的意义先引导学生分析1和5有什么共同特
3、点?在学生回答的基础上,教师归纳总结出共同待点是:均在直线l3的一侧,且分别在l1和l2的上方,像这样的两个角叫作同位角请同学们指出:图中还有同位角吗?(答:2与6,4与8,3与7)(2)内错角的意义(3)同旁内角的意义(这两种角的教法类似同位角,如果学生要问1和6,1和7是什么关系,可以简单说一下,不问也不说)3变式练习,揭露概念本质属性(1)如图2-32,说出以下各对角是哪两条直线被第三条直线所截而得到的?1与2,2与4,2与3答:与2是l2、l3被l1所截而得到的一对同旁内角2与4是直线l2、l1被l3所截而得到的同旁内角2与3是l2、l1被l3所截而得到的同位角(2)如图2-33,找出
4、下列图中的同位角,内错角和同旁内角答:同位角有:2与3,4与7,4与8;内错角有1与3,6与8,6与7;同旁内角有3与8,1与4(3)如图2-34,指出图中1与2,3与4的关系答:1与2是内错角,3与4也是内错角4正确识别这三类角应注意的问题(1)识别这三类角首先要抓住“三条线”,即:哪两条直线被哪一条直线所截(2)抓住“截线”,截线的同侧有哪些角、从中找同位角和同旁内角,在截线的两侧找内错角三、综合应用,课堂练习1找出如图2-35中的对顶角和邻补角答:对顶角有四对,它们是1与3,2与4,5与6,7与8;邻补角有1与2,2与3,3与4,4与1,5与8,8与6,6与7,7与5(还可以找出图2-3
5、5中相等的角,即四对对顶角)2如图2-36,如果1=2=7,那么还有哪些角是相等的答:1与4是邻补角2与5是邻补角,3与6是邻补角7与8是邻补角,因为1=2=7,2=3(对顶角相等),所以1=2=3=7,则4=5=6=8(等角的补角相等)3如图2-37中,若1=2,证明:3与4是互补的角证明:因为1=3,(对顶角相等)1=2,(已知)所以2=3(等量代换)又因为2+4=180°,所以3+4=180°(等量代换)即3与4是互补的角此题在证明的分析中,可以用以下逻辑思考的过程,即“执果索因”法若要证3与4互补,即证3+4=180°,但4与2的和为180°,因
6、此需证3=2,由于3=1(对顶角相等),1=2是已知,所以2=3而写出证明过程时,要从先证2=3出发,最后得到3+4=180°以上的几何证明题的思考过程是一种常见的方法,它是从要证明结果的出发,探索要得出这个结果时,应具备的条件,只要将条件准备充足,就能得到要求的结果四、小结1教师先提出以下问题:(1)在所学的知识中,直线的位置关系是怎样形成和发展的?(2)学了哪些相互关系的角?(3)寻找同位的、内错角和同旁内角关键应准确找到什么?2在学生回答的基础上,教师指出,(1)(投影)直线位置关系所对应的基本图形结构如图2-38(2)学过六种相互关系的角互为余角,互为补角(邻补角是特殊情形)
7、,对顶角,同位角,内错角,同旁内角(3)寻找同位角,同旁内角关键在于准确找到三线(两线被第三线所截)五、作业1选书中习题2以下六个题供选用(1)指出图2-39(1)中,2和5的关系是_;3和5的关系是_;2和_是直线_、_被_所截,形成的同位角;1和4呢?3和4呢?6和7是对顶角吗?(2)指出图中2-39(2)中,C和D的关系:B和GEF的关系;A和D的关系;AGE和BGE的关系;CFD和AFB的关系(3)如图2-39(3),用数字标出的八个角中同位角有_;内错角有_;同旁内角有_;(4)如图2-39(4),若1=2,可推出1与ADE_;1与BDE_(5)判断正误:如图2-39(5),1和B是
8、同位角;2和B是同位角;2和C是内错角;EAD和C是内错角(6)如图2-39(6),1和4是同位角;1和5是同位角;2和7是内错角;1和4是同旁内角;1和2是同旁内角板书设计课堂教学设计说明1本教案为1课时45分钟2上节课讨论了两条直线相交以后所形成的四个角,这一节课是进一步讨论三条直线相交后所形成的八个角,所以在教课过程,要运用基本图形结构将所学的知识及其内在联系向学生展示3在讲三线八角概念时,一定要细致地分析、顾名思义,把握住两个关键的环节,“三条线与一条线”,尽量给出变式的图形,让学生分辨清楚4这节课虽然不涉及两条直线平行后被第三条直线所截的问题,但在可能的情况下,将平行线的图形让学生见到,对下一步的学习很有好处,例如,平行四形中的内错角,学生开始接受起来有一定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业名称绿色发展报告2024上半年综合报告消毒灭菌类器械
- 粮食仓储安全管理合同(CF-2000-0152)协议
- 养老机构服务质量管理办法
- 企业员工安全培训记录模板
- 通信设备维护技术规范与操作流程
- 电力系统设备运行维护管理规程
- 酒店前台服务流程与客户沟通技巧
- 电子商务法律法规实务培训教材与案例
- 企业数字化转型阶段性工作计划
- 小升初数学总复习资料包
- 律师调查报告委托合同9篇
- 2026年高考作文备考训练之“自我接纳-自我认知-自我超越”作文讲评
- 2025年河北石家庄交通投资发展集团有限责任公司公开招聘操作类工作人员336人考试参考题库及答案解析
- 幼儿园大班数学《小熊种玉米》课件
- 公交车广告承包合同5篇
- 2025年秋新北师大版数学3年级上册全册同步教案
- GB/T 13460-2016再生橡胶通用规范
- 基础观感验收自评报告
- 班级管理(第3版)教学课件汇总全套电子教案(完整版)
- 公路桥梁工程施工安全专项风险评估报告
- T∕ACSC 02-2022 中医医院建筑设计规范
评论
0/150
提交评论