人教版数学八年级上册11.3多边形及其内角和学案_第1页
人教版数学八年级上册11.3多边形及其内角和学案_第2页
人教版数学八年级上册11.3多边形及其内角和学案_第3页
人教版数学八年级上册11.3多边形及其内角和学案_第4页
人教版数学八年级上册11.3多边形及其内角和学案_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、八年级上11.3 多边形及其内角和一、学习目标:1. 了解多边形的有关概念,了解多边形的内角和与外角和;2. 知道什么样的图形可以镶嵌平面,能进行简单的镶嵌设计二、重点、难点:重点:多边形的内角和公式与外角和难点:多边形能覆盖平面需要满足的条件三、考点分析:本讲内容在中考试卷中多以填空题、选择题的形式出现,属基本内容,主要考点有两个:1. 多边形的边数与角度的换算,对角线的条数和边数之间的关系;2. 用一种或几种正多边形镶嵌成一个平面,进行简单的镶嵌设计【知识点总结】1. 多边形的有关概念(1)在平面内,由一些线段首尾顺次相接组成的图形叫做多边形(2)连接多边形不相邻的两个顶点的线段,叫做多边

2、形的对角线(3)各个角都相等,各条边都相等的多边形叫做正多边形2. 多边形的内角和与外角和(1)n边形的内角和等于(n2)·180°(2)n边形的外角和等于360°3. 镶嵌(1)用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面(或平面镶嵌)(2)一般地,多边形能覆盖平面需要满足两个条件:拼接在同一个点的各个角的和恰好等于360°(周角);相邻的多边形有公共边【典型例题】知识点一:多边形及其内角和例1. 一个十二边形有几条对角线?思路分析:题意分析:本题考查多边形的边数和对角线条数之间的关系解题思路:过十二边形的任意一个顶点可以画9条

3、对角线,但每条对角线在每个顶点都重复计算了一次,所以实际对角线的条数应该为12×9÷254(条)解答过程:十二边形的对角线共有54条解题后的思考:对于一个n边形的对角线的条数,我们可以总结出规律,共有条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数例2. 已知一个多边形的内角和与外角和之比为72,求这个多边形的边数思路分析:题意分析:本题考查多边形内角和公式的应用及外角和解题思路:由于多边形的外角和与边数无关,为360°,故此题只要根据72的关系列出方程,解方程即可解答过程:设这个多边形的边数为n根据题意,得解得,n9解题后的思考:此类问题多是通过

4、等量关系建立方程来求边数例3. 正五边形的一个内角的度数是_思路分析:题意分析:本题考查正多边形的性质和多边形的内角和公式解题思路:根据题意得正五边形的每个内角的度数为108°解答过程:108°解题后的思考:n边形的内角和公式为(n2)·180°,正多边形的每个内角都相等,如果设其内角为x°,则5x(52)×180,可解得x108或利用外角和列方程:180x360÷5例4. 如图所示,求abcdef的度数思路分析:题意分析:这个多边形不是我们通常研究的多边形类型,需先进行转化,将其变成凸多边形,再用多边形的内角和公式求解解题

5、思路:要求六个角之和,则需在同一个多边形中,故需连接bf将原多边形转化为四边形解答过程:连接bf因为1cd,1cbfdfb,所以cdcbfdfb所以aabccdedfeaabccbfdfbedfeaabfbfee360°解题后的思考:多边形问题常通过连接两点或对角线从而转化为三角形或四边形的问题来解决例5. 如图所示,已知在abc中,a60°,b75°,将abc的一角折叠,使点c落在abc内,若120°,2的度数是多少?这个结论是如何得出来的?思路分析:题意分析:可把2看作四边形abed一个内角的一部分解题思路:解本题的基本思路是:在abc中求出c,在c

6、ed中求出cdeced,在四边形abed中求出12,进而求出2解答过程:270°因为a60°,b75°,所以c180°(ab)45°所以cdeced180°c135°所以12360°(abcdeced)90°又因为120°,所以270°解题后的思考:折叠前后c的度数不变,是解此题的关键例6. 如图所示,已知六边形abcdef中,abcdef120°,边长ab2cm,bc8cm,cd11cm,de6cm,求这个六边形的周长是多少?思路分析:题意分析:在这个六边形中,有四条边长已

7、知,求其周长关键是要求出af和ef的长解题思路:由题意中各角都为120°,想到它的外角为60°,如果延长各边,能得到4个等边三角形,从而求得ef、af的长解答过程:向两边分别延长ab、cd、ef,如图所示,得pqr因为paf180°baf180°120°60°,同理afp60°,所以p60°所以ppafafp所以paf为等边三角形同理bcq、der均为等边三角形所以pqr也为等边三角形所以cqbqbc8(cm),drerde6(cm)所以qr811625(cm),afpapqabbq252815(cm),efprp

8、fer251564(cm)所以六边形abcdef的周长为2811641546(cm)解题后的思考:当题中涉及到120°、60°、45°、30°等特殊角时,应想到把它们转到特殊三角形中,如等边三角形、直角三角形等本题就是把af和ef转化成等边三角形的边,利用等边三角形的性质来求解的小结:有关多边形的问题,常考查对角线的条数,多边形的内角和,外角和等知识,熟记其中蕴含的规律性的东西,遇到这些问题时就能迎刃而解知识点二:平面镶嵌例7. 如果限定用一种正多边形镶嵌,在下面的正多边形中,不能镶嵌成一个平面的是( )a. 正三角形b. 正方形c. 正六边形d. 正八

9、边形思路分析:题意分析:本题考查用同种正多边形镶嵌平面解题思路:当正多边形的一个内角的度数是360°的约数时,用这样的正多边形能镶嵌平面题目中a、b、c项的内角度数均是360°的约数,而只有d项不符合,因为正八边形每个内角的度数为135°,显然135°不是360°的约数,所以限定用正八边形这一种正多边形来镶嵌,不能镶嵌成一个平面,故选d解答过程:d解题后的思考:判断用同种正多边形能不能进行镶嵌时,只需用360°除以这个正多边形的内角如果能整除,就能进行平面镶嵌;如果不能整除,就不能进行平面镶嵌例8. 我们常见到如图所示图案的地面,它们

10、分别是全用正方形或全用正六边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面(1)你能不能另外想出一个用一种多边形(不一定是正多边形)的材料铺地的方案?把你想到的方案画成草图(2)请你再画出一个用两种不同的正多边形材料铺地的草图思路分析:题意分析:这是一道平面镶嵌的实际应用问题解题思路:解答此题时要注意观察周围环境中的镶嵌问题,从中找到灵感,还要进行多次尝试,善于创新解答过程:(1)符合要求的铺地方案很多,下面提供几例作为参考(2)符合要求的铺地方案很多,下面提供几例作为参考解题后的思考:在实际生活中,镶嵌平面时最常用的是四边形,有时也会用三角形和六边形,不管用什么样的图形,只要满足镶嵌

11、的条件即可小结:平面镶嵌的关键是使拼接在同一个点的各个角的和恰好等于360°【方法总结】本讲我们探索归纳了几条规律,正确利用这些规律可大大加快解题速度和准确程度:1. n边形的对角线条数:2. n边形的内角和:(n2)·180°,n边形的外角和是360°,与边数无关3. 根据镶嵌的定义可知,用一种相同的多边形能否镶嵌平面,关键是看这种多边形的几个内角之和是否等于360°(或180°),如图和所示;用一种相同的正多边形能否镶嵌平面,关键是看周角360°能否被正多边形的一个内角的度数整除,如图所示用多种多边形镶嵌平面时,如图所示

12、,要看两点:a. 拼接在同一个点的各个角的和恰好等于360°(周角);b. 相邻的多边形有公共边【同步练习】(答题时间:60分钟)一、选择题1. 一个多边形的每个内角都等于120°,这个多边形的边数为( )条a. 5b. 6c. 7d. 82. 用正四边形一种图形进行平面镶嵌时,它在一个顶点周围的正四边形的个数为( )a. 2个b. 3个c. 4个d. 5个3. 如果一个多边形的每个内角都相等,且内角和为1260°,那么它的一个外角为( )a. 30°b. 36°c. 40°d. 45°4. 多边形的内角和不可能是( )a.

13、 810°b. 540°c. 1800°d. 180°5. 如果多边形的边数增加1,则多边形的内角和、外角和分别( )a. 增加180°,增加180°b. 不变,增加180°c. 不变,不变d. 增加180°,不变6. 能够铺满地面的正多边形组合是( )a. 正八边形和正方形b. 正五边形和正十边形c. 正四边形和正六边形d. 正四边形和正七边形*7. 在n边形一边上取一点与各顶点相连,可得三角形的个数为( )a. n个b. (n2)个c. (n1)个d. (n1)个*8. 过多边形的一个顶点的所有对角线把多边形分

14、成9个三角形,这个多边形的边数为( )条a. 9b. 10c. 11d. 12二、填空题9. 在正六边形abcdef中,a120°,ab2cm,则d_,de_10. 一个正多边形的每个外角都是72°,则这个多边形是_边形11. n(n为整数,且n3)边形的内角和比(n1)边形的内角和小_度12. 从n边形的一个顶点出发共引出了5条对角线,则这个n边形是_边形,这5条对角线把n边形分成了_个三角形*13. 如果用三种正多边形地砖镶嵌地面,一个顶点处已有一个正方形和一个正六边形地砖,则还需一个正_边形地砖*14. 用正三角形与正方形两种图案作平面镶嵌,设在一个顶点周围有a个正三

15、角形和b个正方形,则a_,b_三、解答题15. 若一个多边形的各边都相等,周长为63,且内角和为900°,求它的边长16. 如图所示,(1)四边形共有_条对角线,五边形共有_条对角线,六边形共有_条对角线;(2)你能说出七边形共有多少条对角线吗?(3)由(1)、(2),请猜想n边形的对角线的总条数,说说你的理由*17. 将五边形截去一个角后所得的多边形有几条对角线?*18. 小军在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现是少加了一个内角,求:(1)这个多边形是几边形?(2)这个内角是多少度?四、拓广探索*19. (1)填表:正多边形3

16、456n正多边形每个内角的度数(2)如果限用一种正多边形进行平面镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正四边(方)形、正六边形中选一种,再在其他正多边形中选一种,请画出这两种不同的正多边形进行平面镶嵌的草图,并探索这两种正多边形共能镶嵌成几种不同的平面图形,说明你的理由【练习答案】一、选择题1. b2. c3. c 解析:因为(n2)·180°1260°,解得n9这个多边形的每个内角都相等,每个外角也都相等所以它的一个外角是360°÷940°4. a 解析:用内角和公式验证5. d 解析:外角和与边数无关,故不变

17、内角和的变化从公式(n2)·180°中可以看出,n增加1,内角和增加180°6. a 解析:正八边形的一个内角是135°在一个顶点处,两个正八边形和一个正方形可拼出135°×290°360°所以正八边形和正方形组合能铺满地面7. c 解析:可采用归纳猜想法,当n3时,得三角形2个;当n4时,得三角形3个;n边形得三角形(n1)个8. c 解析:过多边形的一个顶点的所有对角线把多边形分成的9个三角形中,除去两端各一个三角形,中间的7个三角形分别含有多边形的一条边,两端的三角形各含有多边形的两条边所以多边形的边数是27

18、211(条)二、填空题9. 120°,2cm10. 正五11. 18012. 八,6 解析:这5条对角线是从一个顶点引出的,并不是所有的对角线条数13. 十二 解析:根据题意,另一个正多边形的内角是360°90°120°150°,所以(n2)·180°150°×n,解得n1214. 3,2 解析:根据题意有60°×a90°×b360°,即2a3b12,且a、b为正整数,解得a3,b2三、解答题15. 解:设该多边形有n条边,则(n2)×180°900°,解得n7因为63÷79,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论