




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、向量的数量积(2)一、教学目标:向量的数量积运算利用向量的数量积运算判定垂直、求模、求角二、教学重点:向量的数量积运算利用向量的数量积运算判定垂直、求模、求角三、教学方法:练习法,纠错法,归纳法四、教学过程:考点一:向量的数量积运算(一)、知识要点:1)定义: 设<>=,则 (的范围为 )设,则 。注:不能写成,或 的结果为一个数值。2)投影:在方向上的投影为 。3)向量数量积运算律: 注:没有结合律二)例题讲练1、下列命题:若,则,中至少一个为若且,则中正确有个数为 ( )a. 0个 b. 1个 c. 2个 d. 3个2、已知中,a,b,c所对的边为a,b,c,且a=3,b=1,
2、c=30°,则= 。3、若,满足,且,则= 。4、已知,且与的夹角为,则在上的投影为 。考点二:向量数量积性质应用一)、知识要点: (用于判定垂直问题)(用于求模运算问题)(用于求角运算问题)二)例题讲练1、已知,且与的夹角为,求当m为何值时2、已知,则 。3、已知和是非零向量,且=,求与的夹角4、已知,且和不共线,求使与的夹角是锐角时的取值范围巩固练习1、已知和是两个单位向量,夹角为,则()等于( )a.-8 b. c. d.82、已知和是两个单位向量,夹角为,则下面向量中与垂直的是( ) a. b. c. d. 3、在中,设,若,则( ) 直角三角形 锐角三角形 钝角三角形 无法
3、判定4、已知和是非零向量,且与垂直,与垂直,求与的夹角。5、已知、是非零的单位向量,且+=,求证:为正三角形。3.1.5空间向量运算的坐标表示课题向量的坐标 教学目的要求1理解空间向量与有序数组之间的1-1对应关系 2掌握投影定理、分向量及方向余弦的坐标表示主要内容与时间分配1投影与投影定理 25分钟2分向量与向量的坐标 30分钟3模与方向余弦的坐标表示 35分钟重点难点1投影定理2分向量3方向余弦的坐标表示教学方法和手段启发式教学法,使用电子教案一、向量在轴上的投影1几个概念(1) 轴上有向线段的值:设有一轴,是轴上的有向线段,如果数满足,且当与轴同向时是正的,当与轴反向时是负的,那么数叫做
4、轴上有向线段的值,记做ab,即。设e是与轴同方向的单位向量,则(2) 设a、b、c是u轴上任意三点,不论三点的相互位置如何,总有(3) 两向量夹角的概念:设有两个非零向量和b,任取空间一点o,作,规定不超过的称为向量和b的夹角,记为(4) 空间一点a在轴上的投影:通过点a作轴的垂直平面,该平面与轴的交点叫做点a在轴上的投影。(5) 向量在轴上的投影:设已知向量的起点a和终点b在轴上的投影分别为点和,那么轴上的有向线段的值叫做向量在轴上的投影,记做。2投影定理性质1:向量在轴上的投影等于向量的模乘以轴与向量的夹角的余弦:性质2:两个向量的和在轴上的投影等于两个向量在该轴上的投影的和,即 性质3:
5、向量与数的乘法在轴上的投影等于向量在轴上的投影与数的乘法。即二、向量在坐标系上的分向量与向量的坐标1向量在坐标系上的分向量与向量的坐标通过坐标法,使平面上或空间的点与有序数组之间建立了一一对应关系,同样地,为了沟通数与向量的研究,需要建立向量与有序数之间的对应关系。设a =是以为起点、为终点的向量,i、j、k分别表示 图75沿x,y,z轴正向的单位向量,并称它们为这一坐标系的基本单位向量,由图75,并应用向量的加法规则知:i + j+k或a = ax i + ayj + azk上式称为向量a按基本单位向量的分解式。有序数组ax、ay、az与向量a一一对应,向量a在三条坐标轴上的投影ax、ay、
6、az就叫做向量a的坐标,并记为 a ax,ay,az。上式叫做向量a的坐标表示式。于是,起点为终点为的向量可以表示为特别地,点对于原点o的向径注意:向量在坐标轴上的分向量与向量在坐标轴上的投影有本质区别。向量a在坐标轴上的投影是三个数ax、ay、az,向量a在坐标轴上的分向量是三个向量ax i 、 ayj 、 azk.2向量运算的坐标表示设,即,则(1) 加法: 减法: 乘数: 或 平行:若a0时,向量相当于,即也相当于向量的对应坐标成比例即三、向量的模与方向余弦的坐标表示式设,可以用它与三个坐标轴的夹角(均大于等于0,小于等于)来表示它的方向,称为非零向量a的方向角,见图76,其余弦表示形式称为方向余弦。图761 模2 方向余弦由性质1知,当时,有 任意向量的方向余弦有性质: 与非零向量a同方向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司每月娱乐活动方案
- 公司组织义工活动方案
- 公司组建舞蹈队活动方案
- 公司研学策划方案
- 公司组织烧烤策划方案
- 公司派对活动方案
- 公司节后收心会活动方案
- 2025年心理健康教育辅导考试试题及答案
- 滨海生态补偿机制-洞察及研究
- 2025年食品科学与工程专业考试试卷及答案
- 凉山州属国有企业专业技术人员及管理人员招聘笔试真题2024
- 数学建模思想在中小学数学课堂教学中的应用研究
- 2025年五级应急救援员资格理论考试题库(含答案)
- 国家开放大学汉语言文学本科《古代小说戏曲专题》期末纸质考试第一大题选择题库2025春期版
- GB/T 45236-2025化工园区危险品运输车辆停车场建设规范
- 深圳市劳动合同样本大全
- GB/T 45144-2024道路车辆车轮和轮辋使用、维护和安全的一般要求及报废条件
- 050011市政管理学(江苏开放大学专科期末试卷)
- 2025年中考物理终极押题猜想(新疆卷)(考试版A4)
- 护理文化建设与人文护理
- 《植物生理学》章节复习提纲(大学期末复习资料)
评论
0/150
提交评论