




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学总复习之知识点填空1实数的概念1.实数的有关概念(1)有理数: 和 统称为有理数。 (2)有理数分类按定义分: 按符号分:有理数;有理数(3)相反数:只有 不同的两个数互为相反数。若a、b互为相反数,则 。(4)数轴:规定了 、 和 的直线叫做数轴。(5)倒数:乘积 的两个数互为倒数。若a(a0)的倒数为.则 。(6)绝对值:(7)无理数: 小数叫做无理数。(8)实数: 和 统称为实数。(9)实数和 的点一一对应。2.实数的分类:实数3.科学记数法、近似数和有效数字(1)科学记数法:把一个数记成( )的形式(其中1a<10,n是整数)(2)近似数是指根据精确度取其接近准确数的值。取近
2、似数的原则是“( )”。(3)有效数字:从左边第一个( )的数字起,到精确到的数位止,所有的数字,都叫做这个数字的 ( )。2实数的运算(一):【知识梳理】 1. 有理数加、减、乘、除、幂及其混合运算的运算法则(1)有理数加法法则: 同号两数相加,取_的符号,并把_ 绝对值不相等的异号两数相加,取_的符号,并用 _。互为相反数的两个数相加得_。 一个数同0相加,_。(2)有理数减法法则:减去一个数,等于加上_。(3)有理数乘法法
3、则: 两数相乘,同号_,异号_,并把_。任何数同0相乘,都得_。 几个不等于0的数相乘,积的符号由_决定。当_,积为负,当_,积为正。 几个数相乘,有一个因数为0,积就为_.(4)有理数除法法则: 除以一个数,等于_._不能作除数。 两数相除,同号_,异号_,并把_。 0除以任何一个_的数,都得0(5)幂的运算法则:正数的任何次幂都是_; 负数的_是负数,负数的_是正数(6)有理数混合运算法则: 先算_,再算_,最后算_。 如果有括号,就_。2.实数的运算顺序:在同一个算式里,先 、 ,然后 ,最后 有括号时,先算 里面,再算括号外。同级运算从左到右,按顺序进行。3.运算律(1)加法交换律:_
4、。 (2)加法结合律:_。(3)乘法交换律:_。 (4)乘法结合律:_。(5)乘法分配律:_。4.实数的大小比较(1)差值比较法:0 ,=0,0 (2)商值比较法:若为两正数,则 ; (3)绝对值比较法: 若为两负数,则 (4)两数平方法:如5.三个重要的非负数:3数的开方和二次根式(一):【知识梳理】 1.平方根与立方根 (1)如果x2=a,那么x叫做a的 。一个正数有 个平方根,它们互为 ; 零的平方根是 ; 没有平方根。 (2)如果x3=a,那么x叫做a的 。一个正数有一个 的立方根;一个负数有一个 的立方根;零的立方根是 ; 2.二次根式(1)(2)(3)(4)二次根式的性质 ; ;
5、(5)二次根式的运算 加减法:先化为 ,在合并同类二次根式;乘法:应用公式;除法:应用公式二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。4代数式的初步知识(一):【知识梳理】 1. 代数式的分类: 2. 代数式的有关概念 (1)代数式: 用 (加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式。单独的一个数或者一个字母也是代数式 (2)有理式: 和 统称有理式。 (3)无理式: 3.代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。求代数式的值可以直接代入、计算。如果给出的代数式可以化简,要先 再求值。5整式(一):【知识梳理】 1.整式
6、有关概念 (1)单项式:只含有 的积的代数式叫做单项式。单项式中_叫做这个单项式的系数;单项式中_叫做这个单项式的次数; (2)多项式:几个 的和,叫做多项式。_ 叫做常数项。 多项式中_的次数,就是这个多项式的次数。多项式中_的个数,就是这个多项式的项数。2.同类项、合并同类项(1)同类项:_ 叫做同类项;(2)合并同类项:_ 叫做合并同类项;(3)合并同类项法则: 。(4)去括号法则:括号前是“”号,_ 括号前是“”号,_ (5)添括号法则:添括号后,括号前是“+”号,插到括号里的各项的符号都 ;括号前是“”号,括到括号里的各项的符号都 。3.整式的运算(1)整式的加减法:运算实质上就是合
7、并同类项,遇到括号要先去括号。(2)整式的乘除法:幂的运算:整式的乘法法则:单项式乘以单项式: 。单项式乘以多项式: 。单项式乘以多项式: 。乘法公式:平方差: 完全平方公式: 整式的除法:单项式相除:把它们的系数、相同字母分别相除,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式,相同字母相除要用到同底数幂的运算性质。多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加6因式分解(一):【知识梳理】 1分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式2分解困式的方法: 提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个
8、公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法 运用公式法:平方差公式: ; 完全平方公式: ;3分解因式的步骤:(1)分解因式时,首先考虑是否有 ,如果有 ,一定先 ,然后再考虑是否能用公式法分解(2)在用公式时,若是两项,可考虑用 ;若是三项,可考虑用 ;若是三项以上,可先进行适当的分组,然后分解因式。4分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准若有一项被全部提出,括号内的项“ 1”易漏掉分解不彻底,如保留中括号形式,还能继续分解等7分式(一):【知识梳理】 1分式有关概念(1)分式:分母中含有字母的式子叫做分式。
9、对于一个分式来说:当_时分式有意义。当_时分式没有意义。只有在同时满足_,且_这两个条件时,分式的值才是零。 (2)最简分式:一个分式的分子与分母_时,叫做最简分式。 (3)约分:把一个分式的分子与分母的_约去,叫做分式的约分。将一个分式约分的主要步骤是:把分式的分子与分母_,然后约去分子与分母的_。(4)通分:把几个异分母的分式分别化成与_相等的_的分式叫做分式的通分。通分的关键是确定几个分式的_ 。(5)最简公分母:通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。求几个分式的最简公分母时,注意以下几点:当分母是多项式时,一般应先 ;如果各分母的系数都是整数时,通常取
10、它们的系数的 作为最简公分母的系数;最简公分母能分别被原来各分式的分母整除;若分母的系数是负数,一般先把“”号提到分式本身的前边。2分式性质:(1)基本性质:分式的分子与分母都乘以(或除以)同一个 ,分式的值 即:(2)符号法则:_ 、_ 与_的符号, 改变其中任何两个,分式的值不变。即:3.分式的运算: 注意:为运算简便,运用分式的基本性质及分式的符号法则: 若分式的分子与分母的各项系数是分数或小数时,一般要化为整数。若分式的分子与分母的最高次项系数是负数时,一般要化为正数。 (1)分式的加减法法则:(1)同分母的分式相加减, ,把分子相加减;(2)异分母的分式相加减,先 ,化为 的分式,然
11、后再按 进行计算(2)分式的乘除法法则:分式乘以分式,用_做积的分子,_做积的分母,公式:_;分式除以分式,把除式的分子、分母_后,与被除式相乘,公式: ;(3)分式乘方是_,公式_。4分式的混合运算顺序,先 ,再算 ,最后算 ,有括号先算括号内。5对于化简求值的题型要注意解题格式,要先化简,再代人字母的值求值8一次方程(一):【知识梳理】 1.方程的分类 2.方程的有关概念(1)方程:含有 的等式叫方程。(2)有理方程:_统称为有理方程。(3)无理方程:_ 叫做无理方程。(4)整式方程:_叫做整式方程。(5)分式方程:_叫做分式方程。(6)方程的解: 叫做方程的解。(7)解方程: _叫做解方
12、程。(8)一元一次方程:_叫做一元一次方程。(9)二元一次方程:_叫做二元一次方程3解方程的理论根据是:_ 解方程(组)的基本思想是:多元方程要_,高次方程要_. 在解_方程,必须验根.要把所求得的解代入_进行检验;4解一元一次方程的一般步骤及注意事项:步骤具体做法依据注意事项去分母等式性质去括号乘法分配律、去括号法则移项移项法则合并同类项合并同类项法则系数化为1等式性质5. 二元一次方程组的解法 (1)代人消元法:解方程组的基本思路是“ ”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方
13、程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法 (2)减消元法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法6整体思想解方程组 (1)整体代入如解方程组,方程的左边可化为3(x+5)18=y+5,把中的看作一个整体代入中,可简化计算过程,求得y然后求出方程组的解 (2)整体加减,如因为方程和的未知数x、y的系数正好对调,所以可采用两个方程整体相加减求解利用+,得x+y=9,利用得xy=3,可使、组成简单的方程组求得x,y7.两个方程二元一次方程与一次函数的区别和联系区别:(1)二元一次方程有两个未知数,而一次函数有两个变量
14、;(2)二元一次方程用一个等式表示两个未知数的关系,而一次函数既可以用一个等式表示两个变量之间的关系,又可以用列表或图象来表示两个变量之间的关系 联系:(1)在直角坐标系中分别描出以二元一次方程的解为坐标的点,这些点都在相应的一次函数的图象上;(2)在一次函数的图象上任取一点,它的坐标都适合相应的二元一次方程8.两个一次函数图象的交点与二元一次方程组的解的联系:在同一直 坐标系中,两个一次函数图象的交点的坐标就是相应的二元一次方程组的解反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点,9.用作图象的方法解二元一次方程组:(1)将相应的二元一次方程组改写成一次函数的表达
15、式;(2)在同一坐标系内作出这两个一次函数的图象;(3)观察图象的交点坐标,即得二元一次方程组的解 9一元二次方程(一):【知识梳理】 1. 一元二次方程:只含有一个 ,且未知数的指数为 的整式方程叫一元二次方程。它的一般形式是 (其中 、 ) 它的根的判别式是= ;当0时,方程有 实数;当=0时,方程有 实数根;当0时,方程有 实数根;一元二次方程根的求根公式是 、(其中 )2一元二次方程的解法: 配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法用配方法解一元二次方程:ax2bx+c=0(k0)的一般步骤是:化二次项系数为1,即方程两边同除以二次项系数;移项,即使方
16、程的左边为二次项和一次项,右边为常数项;配方,即方程两边都加上 的绝对值一半的平方;化原方程为的形式;如果就可以用两边开平方来求出方程的解;如果n=0,则原方程无解 公式法:公式法是用求根公式求出一元二次方程的解的方法。它是通过配方推导出来的一元二次方程的求根公式是 注意:用求根公式解一元二次方程时,一定要将方程化为 。 因式分解法:用因式分解的方法求一元二次方程的根的方法叫做 它的理论根据是两个因式中至少要有一个等于0,因式分解法的步骤是:将方程右边化为0;将方程左边分解为两个一次因式的乘积;令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解3一元二
17、次方程的注意事项: 在一元二次方程的一般形式中要注意,强调a0因当a=0时,不含有二次项,即不是一元二次方程如关于x的方程(k21)x2+2kx+1=0中,当k=±1时就是一元一次方程了 应用求根公式解一元二次方程时应注意:化方程为一元二次方程的一般形式;确定a、b、c的值;求出b24ac的值;若b24ac0,则代人求根公式,求出x1 ,x2若b24a0,则方程无解 方程两边绝不能随便约去含有未知数的代数式如2(x4)2=3(x4)中,不能随便约去(x4) 注意:解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:直接开平方法因式分解法公式法
18、10分式方程及应用(一):【知识梳理】1分式方程:分母中含有 的方程叫做分式方程2分式方程的解法:解分式方程的关键是 (即方程两边都乘以最简公分母),将分式方程转化为整式方程;3分式方程的增根问题: 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根的增根; 验根:因为解分式方程可能出现增根,所以解分式方程必须验根。验根的方法是将所求的根代人 或 ,若 的值为零或 的值为零,则该根就是增根。4分式方程的应用:列分式方程解应用题与列一元一次方程解应用题类似
19、,但要稍复杂一些解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性5通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或分式方程,灵活应用不同的解法,特别是技巧性的解法解决问题。6. 分式方程的解法有 和 。11方程及方程组的应用(一):【知识梳理】 1.列方程解应用题常用的相等关系题型基本量、基本数量关系寻找思路方法工作(工程)问题工作量、工作效率、工作时间把全部工作量看作1工作量=工作效率×工作时间相等关
20、系:各部分工作量之和=1常从工作量、工作时间上考虑相等关系比例问题相等关系:各部分量之和=总量。设其中一分为,由已知各部分量在总量中所占的比例,可得各部分量的代数式年龄问题大小两个年龄差不会变抓住年龄增长,一年一岁,人人平等。浓度问题稀释问题溶剂(水)、溶质(盐、纯酒精)、溶液(盐水、酒精溶液)溶质=溶液×百分比浓度由加溶剂前后溶质不变。两个相等关系:加溶剂前溶质质量=加溶剂后溶质质量加溶剂前溶液质量+加入溶剂质量=加入溶剂后的溶液质量加浓问题同上由加溶质前后溶剂不变。两个相等关系:加溶质前溶剂质量=加溶质后溶剂质量加溶质前溶液质量+加入溶质质量=加入溶质后的溶液质量混合配制问题等量
21、关系:混合前甲、乙种溶液所含溶质的和=混合后所含溶质混合前甲、乙种溶液所含溶剂的和=混合后所含溶剂利息问题本息和、本金、利息、利率、期数关系:利息=本金×利率×期数相等关系:本息和=本金+利息行程问题追击问题路程、速度、时间的关系:路程=速度×时间1:同地不同时出发:前者走的路程=追击者走的路程2:同时不同地出发:前者走的路程+两地间的距离=追击者走的路程相遇问题同上相等关系:甲走的路程+乙走的路程=甲乙两地间的路程航行问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度水流(风)速度1:与追击、相遇问题的思路方法类似2:抓住两地距离不
22、变,静水(风)速度不变的特点考虑相等关系。数字问题多位数的表示方法:是一个多位数可以表示为(其中0a、b、c10的整数)1:抓住数字间或新数、原数间的关系寻找相等关系。2:常常设间接未知数。商品利润率问题商品利润=商品售价商品进价首先确定售价、进价,再看利润率,其次应理解打折、降价等含义。 2.列方程解应用题的步骤: (1)审题:仔细阅读题,弄清题意; (2)设未知数:直接设或间接设未知数; (3)列方程:把所设未知数当作已知数,在题目中寻找等量关系,列方程; (4)解方程; (5)检验:所求的解是否是所列方程的解,是否符合题意; (6)答:注意带单位12一元一次不等式(一):【知识梳理】 1
23、不等式:用不等号(、)表示 的式子叫不等式。2不等式的基本性质:(1)不等式的两边都加上(或减去) ,不等号的 (2)不等式的两边都乘以(或除以) ,不等号的 (3)不等式的两边都乘以(或除以) ,不等号的方向 3不等式的解:能使不等式成立的 的值,叫做不等式的解4不等式的解集:一个含有未知数的不等式的 ,组成这个不等式的解集5解不等式:求不等式 的过程叫做解不等式6一元一次不等式:只含有 ,并且未知数的最高次数是 ,系数不为零的不等式叫做一元一次不等式7解一元一次不等式易错点:(1)不等式两边部乘以(或除以)同一个负数时,不等号的方向要改变,这是同学们经常忽略的地方,一定要注意;(2)在不等
24、式两边不能同时乘以08一元一次不等式的解法:解一元一次不等式的步骤: , , , , (不等号的改变问题)9求不等式(组)的正整数解或负整数解等特解时,可先求出这个不等式(组)的所有解,再从中找出所需特解10一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成一个 11一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的 ,叫做这个一元一次不等式组的解集12解不等式组:求不等式组解集的过程,叫做解不等式组13一元一次不等式组的解 (1)分别求出不等式组中各个不等式的解集;(2)利用数轴或口诀求出这些解集的公共部分,即这个不等式的解。(口诀: 。)14.不等式组的分类及
25、解集(ab)13不等式(组)的应用(一):【知识梳理】 1列不等式解应用题的特征:列不等式解应用题,一般所求问题有“至少”“最多”“不低于”“不大于”“不小于”等词,要正确理解这些词的含义2列不等式解应用题的一般步骤:列不等式解应用题和列方程解应用题的一般步骤基本相似,其步骤包括: ; ; ; ; 。(其中检验是正确求解的必要环节)14平面直角坐标系与函数的概念一:【课前预习】(一):【知识梳理】 1.平面直角坐标系(1) 平面内两条有公共原点且互相垂直的数轴,构成平面直角坐标系,其中,水平的数轴叫做_轴或_轴, 通常取向右为正方向;铅直的数轴叫做_轴或_轴,取竖直向上为正方向,两轴交点O是原
26、点,在平面中建立了这个坐标系后,这个平面叫做坐标平面。(2) 坐标平面的划分:x轴和y轴将坐标平面分成四个象限,如图所示,按_方向编号为第一、二、三、四象限。注意:坐标原点、x轴、y轴不属于任何象限。(3) 点的坐标的意义:平面中,点的坐标是由两个有顺序的实数组成,其顺序是横坐标在前,纵坐标在后,中间用“,”分开,如(-2,3),横坐标是-2,纵坐标是-3,其位置不能颠倒,(-2,3)与(3,-2)是指两个不同的点的坐标。(4) 各个象限内和坐标轴的点的坐标的符号规律x轴将坐标平面分为两部分,x轴上方的点的_坐标为正数;x轴下方的点的_坐标为负数。即第_、_象限及y轴正方向(也称y轴正半轴)上
27、的点的纵坐标为_数;第_、_四象限及y轴负方向(也称y轴负半轴)上的点的纵坐标为_数。反之,如果点P(a,b)在轴上方,则b_0;如果P(a,b)在轴下方,则b_0。 y轴将坐标平面分为两部分,y轴左侧的点的横坐标为负数;y轴右侧的点的横坐标为正数。即第_、_象限和x轴负半轴上的点的_坐标为负数;第_、_象限和和_轴正半轴的的点的_坐标为正数。反之,如果点P(a,b)在轴左侧,则a_0;如果P(a,b)在轴右侧,则a_0。规定坐标原点的坐标是(0,0)各个象限内的点的符号规律如下表。坐标符号点所在位置横坐标纵坐标第一象限第二象限第三象限第四象限上表反推也成立,如:若点P(a , b)在第四象限
28、,则a > 0 ,b < 0等等。坐标轴上的点的符号规律坐标符号点所在位置横坐标纵坐标X轴正半轴负半轴Y 轴正半轴负半轴原点说明:由符号可以确定点的位置,如:横坐标为0的点在y轴上;横坐标为0,纵坐标小于0的点在y轴的负半轴上等等;由上表可知x轴的点可记为(x , 0) ,y轴上的点可记做(0 , y )。(5) 对称点的坐标特征:关于x轴对称的两点:_坐标相同,_坐标互为_。如点P(2,-4)关于x轴对称的点的坐标为_;反之亦成立;关于y轴对称的两点:_坐标相同,_坐标互为_。如点P(2,-4)关于y轴对称的点的坐标为_;反之亦成立;关于原点对称的两点:横坐标、纵坐标都是互为_;
29、如P(-2,3)与Q_关于原点对称。 (6) 坐标平面内的点和有序实数对(x , y)建立了_关系。即:在坐标平面内每一点,都可以找到惟一一对有序实数与它对应;反过来,对于任意一个有序实数对,都可以在坐标平面内找到惟一一个点与它对应。 (7) 第一、三象限角平分线上的点到_轴、_轴的距离相等,可以用直线_表示;第二、四象限角平线线上的点到_轴、_轴的距离也相等,可以用直线_表示。 2.函数基础知识(1) 函数: 如果在一个变化过程中,有两个变量x、y,对于x的 ,y都有 与之对应,此时称y是x的 ,其中x是自变量,y是因变量(2) 自变量的取值范围:函数关系式是整式,自变量取值是 函数关系式是
30、分式,自变量取值应使得 不等于0函数关系式是偶次根式,自变量取值为 为非负数(4)实际问题的函数式,使实际问题有意义。(3)常量与变量:常量:在某变化过程中 的量。变量:在某变化过程中 的量。(4) 函数的表示方法: ; ; 。15一次函数一:【课前预习】(一):【知识梳理】 1. 一次函数的意义及其图象和性质 (1)一次函数:若两个变量x、y间的关系式可以表示成 (k、b为常数,k 0)的形式,则称y是x的一次函数(x是自变量,y是因变量特别地,当b 时,称y是x的正比例函数(2)一次函数的图象:一次函数y=kx+b的图象是经过点( , ),( , )的一条直线,正比例函数y=kx的图象是经
31、过原点(0,0)的一条直线,如下表所示 (3)一次函数的性质:y=kxb(k、b为常数,k 0)当k 0时,y的值随x的值增大而 ;当k0时,y的值随x值的增大而 (4)直线y=kxb(k、b为常数,k 0)时在坐标平面内的位置与k在的关系直线经过第 象限(直线不经过第 象限);直线经过第 象限(直线不经过第 象限);直线经过第 象限(直线不经过第 象限);直线经过第 象限(直线不经过第 象限); 2. 一次函数表达式的求法 (1)待定系数法:先设出解析式,再根据条件列方程或方程组求出未知系数,从而写出这个解析式的方法,叫做待定系数法,其中的未知系数也称为待定系数。 (2)用待定系数法求出函数
32、解析式的一般步骤: ; 得到关于待定系数的方程或方程组; 从而写出函数的表达式。 (3)一次函数表达式的求法:确定一次函数表达式常用待定系数法,其中确定正比例函数表达式,只需一对x与y的值,确定一次函数表达式,需要两对x与y的值。16反比例函数(一):【知识梳理】 1反比例函数:一般地,如果两个变量x、y之间的关系可以表示成 (k为常数,k0)的形式(或y=kx-1或 ,k0),那么称y是x的反比例函数2反比例函数的概念需注意以下几点:(1)k为常数,k0;(2)中分母x的指数为 ;例如y= 就 反比例函数;(3)自变量x的取值范围是 的一切实数;(4)因变量y的取值范围是 的一切实数3反比例
33、函数的图象和性质 利用画函数图象的方法,可以画出反比例函数的图象,它的图象是双曲线,反比例函数y=具有如下的性质(见下表)当k0时,函数的图象在 象限,在每个象限内,曲线从左到右下降,也就是在每个象限内,y随x的增加而减小;当k0时,函数的图象在 象限,在每个象限内,曲线从左到右上升,也就是在每个象限内,y随x的增加而增大 4画反比例函数的图象时要注意的问题:(1)画反比例函数图象的方法是描点法;(2)画反比例函数的图象要注意自变量的取值范围是x0,因此,不能把两个分支连接起来;(2)由于在反比例函数中,x和y的值都不能为0,所以,画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能
34、达到x轴和y轴的变化趋势5. 反比例函数y= (k0)中比例系数k的几何意义,即过双曲线y=(k0)上任意一点引x轴、y轴垂线,所得 为k。6. 用待定系数法求反比例函数解析式时,可设解析式为 17二次函数(二)(一):【知识梳理】 1二次函数与一元二次方程的关系: (1)一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数 的值为0时的情况 (2)二次函数y=ax2+bx+c的图象与x轴的交点有三种情况: ;当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当 时自变量x的值,即一元二次方程ax2bxc=0的根 (3)当二次函数y=ax2+bx+c的图象与
35、 x轴有两个交点时,则一元二次方程y=ax2+bx+c有 ;当二次函数y=ax2+bx+c的图象与x轴 时,则一元二次方程ax2bxc0有两个相等的实数根;当二次函数yax2+ bx+c的图象与 x轴没有交点时,则一元二次方程y=ax2+bx+c 。 2.二次函数的应用: (1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值; (2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值3.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系
36、;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等18函数的综合应用(一):【知识梳理】 1.解决函数应用性问题的思路面点线。首先要全面理解题意,迅速接受概念,此为“面”;透过长篇叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,建立函数模型,此为“线”。如此将应用性问题转化为纯数学问题。 2.解决函数应用性问题的步骤 (1)建模:它是解答应用题的关键步骤,就是在阅读材料,理解题意的基础上,把实际问题的本质抽象转化为数学问题。 (2)解模:即运用所学的知识和方法对函数模型进行分析、运用、,解答纯数学问题,最后检验所得的解,写出实际问题的结论。 (注
37、意:在求解过程和结果都必须符合实际问题的要求;数量单位要统一。) 3.综合运用函数知识,把生活、生产、科技等方面的问题通过建立函数模型求解,涉及最值问题时,运用二次函数的性质,选取适当的变量,建立目标函数。求该目标函数的最值,但要注意:变量的取值范围;求最值时,宜用配方法。19数据的收集(一):【知识梳理】 1.统计学中的基本概念(1)总体: 。(2)个体: 。(3)样本: 。 (4)样本容量: 。 (5)样本是从总体中抽出来的,它能在一定程度上反映总体的情况,但样本既然是总体的一部分,用样本反映总体就会有一定的局限性,一般来说,样本容量越大,用样本估计总体就越准确。2.数据收集方法的选择:
38、、 。(1)普查: 。(2)抽样调查: ;抽样调查时要注意样本的 性和 性。20数据的描述(一):【知识梳理】 1.描述数据集中趋势和平均水平特征的数 (1)平均数: 。 (2)加权平均数: 。 (3)中位数: 。 (4)众数: 。 2.描述数据波动大小(离散程度)特征的数 (1)方差: 。 计算公式: 。 (2)标准差: 。 计算方法是 。 (3)极差: 。21统计的应用(一):【知识梳理】 1.频数与频率 (1)频数:某个数据在一组数据中出现的 为频数;或将数据分组后,落在各小组的数据的 叫做该小组的频数。 (2)频率:每个数据出现的次数与总次数的比值为频率;或每一小组的频数与样本容量的比值叫做这一小组的频数。 (3)频数和频率的基本关系式: (4)绘制频数分布直方图的步骤:计算 ;决定 决定 ;列 ;画出 2.统计图 (1)条形统
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医院感染标准预防考试题及答案
- 九年级化学下册 第10单元 化学与健康 第2节 化学元素与人体健康说课稿 (新版)鲁教版
- 2024-2025学年第一学期期中考试-初一语文-试卷
- 蒸汽热网基础知识培训课件
- 2025年企业、公司薪酬管理技能资格知识试题与答案
- 2025年上海市中考生物试卷+答案解析
- 人工智能应用基础 课件 项目1 人工智能工具操作基础
- 2025年解除合同关系的申请书范本
- 消防中控题目技巧及答案
- 葡萄酒盲品知识培训总结
- 智能采矿导论完整整套教学课件
- 初中信息技术奥赛基础知识
- 工业设计方法学
- 非计划再次手术管理制度与流程
- 销售公司和生产公司的合作协议
- 新生儿气管导管滑脱的应急预案及处理流程
- 建筑模型设计与制作(第三版)
- 部编版一年级语文上册全册教案(表格)
- 商品精修教案项目5服装精修
- 小升初简历模板2020免费
- 《社会主义核心价值观》优秀课件
评论
0/150
提交评论