新人教版八年级数学上册导学案_第1页
新人教版八年级数学上册导学案_第2页
新人教版八年级数学上册导学案_第3页
新人教版八年级数学上册导学案_第4页
新人教版八年级数学上册导学案_第5页
免费预览已结束,剩余29页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课第1练三角形的边 一.填空题1 .三角形按边分类可分为一三角形和三角形,其中等腰三角形又可分为一三角形和三角形.2 .在一个三角形中,任意二 大于,其推理的依据是两点的所有连线中,3 .若等腰三角形的两边长分别为3和7,则它的周长为;若等腰三角形的两边长分别是3和4,则它的 周长为4,长为10、7、5、3的四跟木条,选其中三根组成三角形有一种选法。5,若三角形的周长是60cm,且三条边的比为3: 4: 5,则三边长分别为6.已知线段3cm,5cmp(cm,x为偶数,以3. 5, x为边能组成 个三角形。7,8.AABC中,如果AB=8cm, BC=5cm,那么AC的取值范围是.9,若等腰三角

2、形的腰长为6,则它的底边长a的取值范围是;二.选择题10,下列说法中正确的有(.)(1)等边三角形是等腰三角形。(2)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形。(3)三角形的两边之差大于第三边。(4)三角形按角分类锐角三角形、直角三角形和钝角三角形。个 B. 2个 C. 3个 D,4个1L已知三角形的两边长分别为3 077和8c7”,则此三角形的第三边的长可能是()>A. 4 cm B. 5 cm c. 6 cm D. 13 cm11,下列长度的三条线段能组成三角形的是(A. 1 cm , 2 cm cm B. 4 cm , 5 an , 9 cmc. 5 cm , 8

3、cm , 15 cmd. 6 cm, 8 cm , 9 cm12,已知等腰三角形的一边长等于4, 一边长等于9.它的周长是()A. 17 B. 22 C. 17 或 22D. 1313,一个三角形的三边长分别为X, 2, 3,那么X的取值范围()A, 2(x(3 B. 2(x(5 c. x)2 d. 1(x(514 .如果三角形的两边长分别为3和5,则周长L的取值范围是()<L<15<L<16<L<13<L<1615 ,已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为()16,等腰三角形的一边长为3cm,周长为19cm,则腰长为(

4、)cm.或8D.以上答案均不对17.若三角形两边长分别为6cm,2cm,第三边长为偶数,则第三边长为()18,已知等腰三角形的两边长分别为3和6,则它的周长为() 或15三、解答题19.一个等腰三角形,周长为20cm, 一边长6cm,求其他两边的长.20,已知等腰三角形的两边长分别为4,9,求它的周长.是4ABC 内一点,说明 PA+PB+PC> (AB+BC+AC).第2练与三角形有关的线段一.填空题1从三角形一个向 画垂线, 之间的线段叫做三角形的高线2,锐角三角形三条高都在三角形的:直角三角形的两条高钝角三角形有两条高在三角形的.3在三角形中,连结一个 和 的线段叫做三角形的中线.

5、4 .三角形一个角的平分线与这个角的对边相交,这个角的 之间的线段叫做三角形的角平分线.5 .如图,ABC中,高CD、BE. AF相交于点0,则BO3的三条高分别为线段.16 .如图,BD二一 BC,则BC边上的中线为 ZkABD的面积二 的面积.2二,选择题7 .三角形的三条而在()A.三角形的内部B.三角形的外部C.三角形的边上D,三角形的内部,外部或边上8 .下列说法正确的是()平分三角形内角的射线叫做三角形的角平分线:三角形的中线,角平分线都是线段,而高是直线:每个三角形都有三条中线,高和角平分线:三角形的中线是经过顶点和对边中点的直线。A. B. X. <3) D.9 .如右胤

6、4E是AABC的中线,已知盾7 = 6,。后=2,则8。的长为()A. 2 rB. 3 C. 4 D. 610 .以下说法错误的是()A.三角形的三条岛一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D,三角形的三条高可能相交于外部一点三.解答题11 .如图,AACB 中,NACB=90°, Z1=ZB.(1)试说明CD是A ABC的高:<2)如果 AC=8, BC=6, AB=10,求 CD 的长第3练与三角形有关的角112 .如图,ZkABC中,AD是BC上的高,AE平分NBAC, ZB=75°

7、, 0ZC=45° ,求NDAE 与NAEC 的度数.一、填空题1 .三角形的三个内角和等于 Q2 .在AABC中,三个内角分别为NA、NB、NC且NA: ZB: ZC=1: 3: 5,则NA=度:ZB=度:ZC=度:3 .如图3所示,/1是4 的外角,/2是八 的外角,/3是小二.选择题4 .如图1所示,ZA=35° , NB=NC=9(T ,则ND的度数是()A. 35°B, 45nC.55°D 65/5,下列图形中能够说明N1>N2的是()ZB=40° , ZBAD =30° 则NC的度数是()(A. 70° B

8、r, 80nC. 100° D. 110°三、解答题7 .已知ABC,三个内角分别为41、N2、Z3 求证:Zl+Z2+Z3=180°证明:如图,过点C作CFAB,再延长线段BC到点D 因为CFAB 所以Nl=: '>N2=: )因为N3、NACF、NFCD组成平角NBCD所以有N3+NACF+NFCD=0:(所以有N1+N2+N3=: :'8 .如下图所示,请求出x的值9.如图4所示,已知在ABLE AD是BC边I是NBAC的平分线,若NB=65,ZC=45° ,求NDAE 的度数上的高,AED12.如图&所示,ZA=25

9、° , ZCED=95° ,ZD=40n ,(求NB的度数12.如图7所示,从A处观测C处时,仰角为NCAD=45',从B处观察C处 时,仰角为NCBD=60° ,则从C处观察A、£时,NACB度数是多少12.如图 8 所示,ABCD, ZA=40" , ZD=45° ,求N、N2*第4练多边形及其内角和一填空题L过四边形一个顶点的对角线把四边形分成两个三角形:过五边形或六边形一个顶点的对角线分别把它 们分成 个或 个三角形:过n边形一个顶点的对角线把n边形分成 个三角形(用含n的代数式表示).2 .一个多边形的每个内角都等于

10、140;那么这个多边形是 边形.3 .如果一个多边形的边数增加1,那么这个多边形的内角和增加 度.4若一个凸多边形的内向和等于它的外角和,则它的边数是.5 .如果一个多边形的每一个外角都相等,并且它的内角和为2880,,那么它的内角为.6 .一个多边形的每个外角都是120° ,则这个多边形是 边形.7 .小华从4点出发向前直走50 m,向左转18° ,继续向前走50 m,再左转18° ,他以同样走法回到A点 时,共走_m.8.如图,N4+N8+NC+N0+NE+NF+NG+NH=./.13 FH %二.选择题9 ,下列角中能成为一个多边形的内角和的是()000。1

11、0,一个多边形共有27条对角线,则这个多边形的边数为()11 ,正”边形的一个内角为120。,那么。为12.在四边形488中,NA、NB、NC、NO的度数之比为2 : 3 : 4 : 3,则ND等于()第十一章三角形水平测试一、选一选,看完四个选项后再做决定呀!>1 .两根木棒的长分别是7cm和10cm.要选择第三根木棒,将它们钉成一个三角一菜.若第三根木 棒的长是acm 则。的取值范围是()A. 3<aB. 7<t/<10 C. a<7 D. 3<«<172 .已知等腰三角形的一边长为3,另一边长为5,那么它的周长是()A. 8 B. 11

12、 C. 13 D. 11 或 133 .具备下列条件的三角形,不是直角三角形的是()a. ZA + ZB = ZCB. ZA = ZB = -ZCC. ZA = 90 -ZBD. NA N8 = 9024 .如图,已知 A8一AC, 8。一DC, ZDBC=ZACB=35°,则 NACD二()A. 20。 B, 25。C. 30。D. 15。5 .若三角形两边长分别为6cm,2cm,第三边长为偶数,则第三边长为()6 .下面说法错误的是()A.三角形的三条角平分线交于一点 B.三角形的三条中线交于一点C.三角形的三条高交于一点D,三角形的三条高所在的直线交于一点7 .如图,将矩形A8

13、C。沿折强,若/847=30°,则N等于()A. 30° B. 45° C. 60° D, 75°8 .如图,Zl=Z2=110° , ZBAE=60° ,那么NBAD 等于A. 20° B, 30°9 .各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有()A, 5个 B. 4个 C. 3个 D.2个10 .周长为P的三角形中,最长边m的取值范围是()4 P , P R P P c P P c P/ PA. <m< B </< C </< D 一

14、<?« 一3232323211.有四条线段,长分别为3cm, 5cm,7cm, 9cm,如果用这些线段组成三角形,二、填一填,要相信自己的能力!可以组成 个三角形.12 .在AEC中,AE边上的高是13 .把一副三角板按如图方式放置,则两条斜边所形成的钝角a=度.0CC14 .五条线段的长分别为1, 2, 3, 4, 5,以其中任意三条线段为边长可以 个三角形.15 .如图,A8C和NAC8的平分线交于点。.当 NA = 60 时,NBOC =16 .如图 516.该五角星中,ZA+ZB+ZC+ZD+ZE=度.三、做一做,要注意认真审题呀!17 . 一个飞机零件的形状如图519

15、所示,按规定N A应等于90。,NB, N D应分别是20。和30。,康师傅觅得NBCD = 143。,就能断定这个零件不合格,你能说出其中的道理吗18 .如图,在 ABC中,AD是BC边上的中线, ADC的周长比 ABD的周长多5cm, AB与AC的和为 11cm,求AC的长.21 .如图, ABC中,N B = 34: Z ACB = 104 AD是BC边上的高,AE是N BAC的平分线,求N DAE 的度数.22 .已知:如图,P是 ABC内任一点,求证:ZBPOZA.题全等三角形的判定(一)(1)一、学习目标1、掌握全等形、全等三角形及相关概念和全等三角形性质。2、/ 理解“平移、触折

16、、旋转”前后的图形全等。4、熟练 确定全等三角形的对应元素。二、自学指导自学课本,完成下列要求:1、理解并背诵全等形及全等三角形的定义C2、注意全等中对应点位理的书写。3、理解并记忆全等三角形的性质。4、自学后完成展示的内容,20分钟后,进行展示。三、展示内容:1、相同的图形放在一起能够 o这样的两个图形叫做。2、能够 的两个三角形叫做全等三角形。3、一个图形经过、后位置变化,但形状'大小都没有改变,即平移、翻折旋转前 后的图形°4、叫做对应顶点。叫做对应边。叫做对应角。5、全等三角形的对应边一。相等。6、武木P4练习1、27、如图1, AABCADEF,对应顶点是,对应角是

17、,对应边是。88、如图2, AABCACDA, AB和CD, BC和DA是对应边,写出其他对应边及对应角9、如图 3, AABNAACM- NB=NC, AC=AB.则 BN=, ZBAN=,=AN,= N AMC.10、如图,AABC53ADEC. CA 和 CD, CB 和 CE 是对应边,ZACD和NBCE相等吗为什么课后反思:1. 2三角形全等的判定(2)一、学习目标1、掌握三角形全等的判定(SSS)2、初步体会尺规作图3、掌握简单的证明格式二、自学指导认真阅读课本,完成下列要求:1、小组讨论探究lo(1)满足一个或两个条件的两个三角形是否全等。(2)满足3个条件时,两个三 角形是否全

18、等。注意分类。2、小组讨论探究2,交流合作,初步体会尺规作图(具体按第7页画图步骤) 3、掌握三角形全等的判定之一(SS5)4、自主学习例1,初步体会证明的基本过程,并会利用判定(5SS)进行简单的推理,注意过程格式。5、利用判定(SSS)作一个角等于已知角,具体按第8页作法的具体步骤。6、自学后完成展示的内容,20分钟后,进行展示。三、展示内容:1、P8,练习2、如图,AB=AD, CB = CD.求证:AABCAADC 3、如图C是AB的中点,AD=CE. CD=BE,求证:ACDgZCBE4、如图,AD = BC, AC = BD.求证:(1) ZDAB=ZCBA <2) ZACD

19、=ZBDC5、如图,已知点B、E、C、F在同一条直线上,AB = DE.AC=DF, BE = CF, 求证: (1) AABCADEF(2) AB/DE课后反思:全等三角形的判定(3)一、自学目标:1、会画一个三角形与已知三角形全等(根据两边与夹角对应相等)>2、理解并掌握边角边的判定方法3、利用边角边判定方法解决实际问题4、探究具备“SSA”条件的两个三角形是否全等二、自学指导认真阅读课本的内容,完成下列要求:1、小组合作学习探究2,注意画图时的规范,用尺规作图注意画法。2、通过面图发现规律:的两个三角形全等。3、认真学习例2后,我们得到:在证明两个三角形中线段相等或角相等时通常通过

20、证明来解决。4、自学后完成展示的内容,20分钟后,进行展示。三、展示内容:1、如图 1 已知aABF 与4DCE 中,NB = NC, BE = CF, AB=CA DA122、如图 2 已知 AB=AC, AD=AE, N1=N2,求证:ABDgaACE证明:VZ1=Z2 ()AZ1+=N2+ ()即 NBAD=NCAEABD ?iiaace 中 () () ()J ()3、如图要测量1:件内槽宽,可以把两根钢条的中点连在一起.就是内槽的宽,为什么)D,则4做成一个工具,只要测量出的长,A tXeA 344、如图 AB=AC, AD = AE.求证:(1) ZB=ZC (2) ZBDC=ZB

21、EC课后反思:全等三角形的判定(三)(4)学习目标:1、掌握全等三角形的判定方法"ASA AAS:2、理解并运用"ASA” "AAS解决相关问题。自学指导:1、自学课本内容,完成下列要求:92、认真学习探究5的内容,按照课本提示的操作步骤动手操作,完成后,归纳探窕5反映 的规律。3、认真阅读探究6,合作探究:要运川ASA证明“两角和其中一角的对边对应相等的两个三角 形全等”关键点是什么。4、学习例3,考虑要证明ACDgABE还需要的条件°5、自学后完成要展示的内容,-20分钟后进行展示。展示内容:1、指导2反映的规律是:的两个三角形全等°简写为

22、:""、或"%2、指导3中关键点是:3、完成深本1一2题。AD4、归纳三角形全等的判定方法:DC = EB,ABE5、如图:D在AB上,E在AC上,ZC= ZB求证:(1> AACD出(2) AC = AB课后反思:全等三角形的判定HL的判定(5)一、学习目标1、掌握RT特殊的判定方法:HL判定方法2、能够用HL判定方法来判定两个RT全等二、自学指导认真阅读内容,要求掌握以下内容1、 前面学习的判定方法,直角三角形是否还能用3、简称4、在学习探究时,一定要动手画图呀!5、学习例4,想一想,要证BC=AD,需要证明什么6、学后完成展示内容,20分钟后展示三、展

23、示内容理解画RTAA, B. C,的过程,并由这个过程得出RT的判定方法:1、已知如图 RT4ADC 与 RTZkBEC 中,ZA=ZB=90° , AC=6cm,AD = BE, CD=CE> 则 AB=2、已知如图 RT4ABC 与 RTZXDEF 中,若 AC=FD, ZE=ZB=90° 用C=DE,ZA=25C,则NF=, ZD=3、如图 AB = CD, AE±BC, DF±BC, CE = BF求证:(1) AE = DF(2) CD/7AB课后反思:角的平分线的性质(6)一、学习目标1、分用改尺规画出一个角的平分线(会说作法)2、理解

24、并掌握角平分线的性质3、感受证明一个几何命题的方法与步骤二、自学指导1、自学课本(10分钟)课后反思角的平分线(7)学习目标:1、)r 掌握角平分线的判定3、会运用角平分线的判定解决简单的问题c自学指导:认真学习课本的内容,完成下列要求:1、找出角平分线判定的题设与结论,并与角平分线性质的题设和结说出探究中AE是NDAE的平分线的理由(3) 作图时要读一步画一步2、自学思考前的内容6-10分钟)(1) 独立动手完成探究,从而得出角平分线的性质:角的平分线上的点O(2) 注意体会角平分线的性质这个命题是如何画出图形,写出已知、求证的。三、展示内容P19页练习1、已知NAOB的角平分线OC,点P在

25、OC上,且点P到OA的距离为4cm,则点P到边OB的距离是2、 .3、 如图在aABC 中,ZC=90°. AD 平分NBAC, BC = 10cm, BD=6cm. 则点D到AB的距离为4、 ABCAB=AC, M 为 BC 中点,MD»1AB 于 D, ME_LAC 于 E,求证:MD = ME已知AABC内,ZABC. NACB的角平分线交于点P,且PD、PE、PF分别垂直于 BC、AC、AB 于 D、Ex F 三点,求证:PD=PE = PF论进行比较。2、合作探究“思考”部分的内容:要确定集贸市场的准确位更(1)根据角平分线的判定, 能否确定集贸市场在公路与铁路夹

26、角的平分线上。(2)再依据集贸市场离两路交叉处的 距离。3、认真学习例题,注意辅助线的作法。4、自学后,完成展示内容,20分钟后进行展示。展示内容:1、课本练习。2、角的内部 的点在角的平分线上。3、如图,ZkABC的角平分线BM、CN交于点P,求证:点P到AABC三边的距离相等。证明:过点P作PDXAB于D.PEXBC于E,PF±AC于F。(把辅助线补充完整);BM是4ABC的角平分线,点P在BM上APD= 。同理:PE = .APD= = .即点P到三边AB、BCs CA的距离相等。4、求证:角的内部到角的两边距离相等的点,在角的平分线上。已知:如图,PD«LAB于D,

27、PE_L_ 于E, PD = ,点P在OC上。求证:NAOC = 证明:A C55、在ZkABC中,外角NCBD和NBCE的平分线BF、CF相交于点F.求证:点F也在NBAC的平分线上。(提示:过点F作AD、BC、AE的垂线段FN、FM、FP,然后证FN二FP 反思:轴对称(一)(8)学习目标:1、理解什么是轴对称图形:2、理解什么是“两个图形关于一条直线对称”:3、能够说出轴对称与轴对称图形的区别与联系。自学指导1、自学,重点掌握,完成练习:2、自学课本,图1213是一个图形,关系。请找出图中A、B、C的对称点A'、B'、C'3、轴对称图形与轴对称的区别与联系展示内容

28、1、如果一个图形沿一条直线折叠,直线两旁的部分能够 个图形就叫做,这条直线就是它的,2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形,那么就说这两个图形 3、教材练习。4、教材的思考,找同学回答。5、教材习题的1、2 课后反思:轴对称(9)一、学习目标1、2.识记线段垂直平分线的定义3、理解轴对称图形的性质4、掌握并会用线段垂直平分线的性质二、自学指导(15分钟)认真阅读思考探窕前的内容(1) 思考部分可在课本上沿MN对折或用测里的方法进行探究(2) 探窕部分要动手操作,找出你发现的规律:PxA=, P2A二AB的关系)由此可得到线段垂直平分线的性质:> 二、A见展示内容1、如图

29、,zlABC中,AD垂直平分BC, AB=5,则AC=2、ZkABC 与4A, B, C,关于直线 1 对称,且 AB=4cm,则 A, B,=3、如图aABC与ADEF关于直线MN对称,直线MN与线段AD的关系是A4、如图AABC中BC的垂直平分线交AB于E,若4ABC的周长为10,=,(特别注意1与线段A_ ABDC1MD J3NBC=4,则AACE周长为_5、如图AD_LBC, BD = DC.点C在AE的垂直平分线上,AECE的长度有什么关系,AB+BD与DE有什么关系<A一B4ABD Cp5课后反思课题:轴对称(三)(10)学习目标:1、掌握线段垂直平分线的判定2、熟练运用线段

30、垂直平分线的性质和判定解决实际问题。自学指导:1、自学课本的内容,完成下列要求:2、合作探究:课本探究的内容中,思考:箭尾应放在橡皮筋的什么位置,3、自学后完成要展示的内容,-20分钟后进行展示。展示内容:1、如图,AD1BC, BD=DC,点C在AE的垂直平分线上,AB,AC£E的长度有什么关系AB+BD与DE有什 么关系2、如图,AB=ACZ MB二MC,直线AM是线段BC的垂直平分线吗3、试证:到一条线段距离相等的点,在这条线段的垂直平分线上。4、三角形中,分别画出边AB,BC的垂直平分线,若这两条垂直平分线交于点0,则点0是否在垂直平 分线上。说明理由:4课后反思:*轴对称(

31、11)一、学习目标1、会用尺规作图,画线段的垂直平分线2、会面轴对称图形的对称轴二、自学指导1、自学课本的内容(7 8分钟)2、阅读例题,注意线段垂直平分线的画法,边看边动手操作3、作轴对称图形的对称轴,就是作出 的垂直平分线m 展示内容1、线段垂直平分线的画法(保留痕迹)已知:线段AB,求作:线段AB的垂直平分线(1) 以A为圆心,以大于V2AB和长为半径作孤(2) 以为圆心,以一的长为半径作瓠,两弧交干一,两点。(3) 作直线,则 为所求的直线2、课本练习1、2、33、下列各图形是轴对称图形吗如果是,画出它们的一条对称轴4、平面内两条相交直线是轴对称图形吗如果是,它有几条对称轴画画看。课后

32、反思作轴对称图形(12)<学习目标:会面一个图形关于一条直线的轴对称图形自学指导:自学课本的内容,完成以下要求:1、结合第一自然段的内容,动手操作(1)、利用线段中 线的知识验证,左脚印与右脚印对应两点P与P'的连线是否被折痕垂直平分(2)、观察对比左脚印与右脚印的形状、大小是否变化2、认真阅读教材例1,边看边操作.在练习木上完成操作的步骤,然后合作交流,归纳已知一条直线 画一个几何图形的轴对称图形的技巧.3、学生自学后,完成展示的内容,20分钟后学生分组展示展示内容1、 一个图形与它的轴对称图形的、完全相同:2、 连接一对对应点的线段被 垂直平分3、 几何图形都可以看做由点组成

33、,只要分别作出这些点关干对称釉的 点,再连接这些点,就可以得到原图形的轴对称图形:4、 对于一些由直线、线段或射线组成的图形,只要作出图形中的一些 的对称点,连接这些对称点,就可以得到原图形的 图形:5、 完成教材练习12;6、 下面哪些汉字经轴对称变换后所成的整体图形仍是汉字>HI 川 ±1 木 I AIA.(§) B.© C.(§)© D.7、李明从镜子里看到自己身后的钟表上的时间是8点35分,请问钟表上显:示的实际时间是( )A.3: 20 B,2: 25 C.3: 25 D,4: 2 0课后反思:作轴对称图形(13)一、学习目标会

34、用轴对称图形的性质解决实际问题二、自学指导学习课木内容,完成下列要求:1、学习探究的内容,将探究中的问题转化为数学问题2、(1)若两镇A、B在管道异侧,怎样确定泵站的位理/(2)管道同侧两点A、B,利用轴对称的性质能否转化为异侧两点A、B'(或A'、B) 3、自学后完成展示的内容,20分钟后进行展示三、展示内容1、指导1中,转化为数学问题是2、已知直线I及其异侧两点A、B,在直线I上求作一点C,使AC+BC最短(画出画法).A.B3、一条河的同侧有A、B两个村庄,现在要在河边修一个水泵站,修在什么位置,才能使水泵站到A、 B两村的距离和最小课后反思:用坐标表示轴对称(14)一、

35、学习目标1、在坐标平面内会写出已知点关于X轴,y轴对称点的坐标,2、%在平面内会画已知多边形关于x轴,y轴对称的多边形。二、自学指导自学教材内容1、认真学习思考部分的内容,确立西直门的坐标2、通过解决本页填空题,总结在平面直角坐标系内,关于x轴(或y轴)对称的两个点坐标的 特点3、在平面直角坐标系中作一个图形关于坐标轴对称的图形,关键是求出已知图形中的一些特殊 点的对称点的坐标。三、展示1、指导2中点(x, y)关于x轴的对称点的坐标为(_, _)点(x. y)关于丫轴的对称点的坐标为(_, _)课后反思:13. 3. 1等腰三角形(15)一、学习目标1、掌握等腰三角形的性质1、22、会利用等

36、腰三角形的性质解决简单问题二、自学指导自学课本内容,完成下列要求1、认真学习探窕的内容,边看边操作、思考(1) 剪出的等腰三角形是否为轴对称图形(2) )把剪出的等腰三角形沿折痕对折,找出其中重合的线段和角2、认真学习等腰三角形性质的证明部分,注意辅助线的添加方法,体会能否可以添加底边上的面或顶 角的平分线。3、学习例1,体会等腰三角形性质的应用。4、自学后完成展示内容,20分钟后进行展示。三、展示内容1、等腰三角形的两个底角,简写成2、等腰三角形的顶角平分线、相互重合。3、已知AABC 中,AB=AC, AD_LBC 于 D.求证:(1) NB=NC(2) ZBAD=ZCAD (3) BD

37、= CD5、 在MNP 中,MN = MO = OPzZNMO= 26 .求NN 和NP课后反思:等腰三角形(二)(16)一、学习目标1、掌握等腰三角形的判定方法2、利用等腰三角形的判定方法(1) 证明相关问题(2) |辅助以尺规作图手段作等腰三角形二、自学指导自学课本内容,完成下列要求:1、通过预习,思考内容后,你有哪些方法证明“等角对等边”这一结论小组交流,互相探讨。2、阅读例2,注意在证明一个三角形为等腰三角形时,关键就是找这个三角形中两条边相等或两角相 等。3、学习例3的内容,边看边操作,体会已知底边和底边上的高,用尺规作等腰三角形的方法。4、自学20分钟后展示。三、展示内容:1、:. 等腰三角形的判定方法:如果,那么 筒写成“3、已知ABC 中,NB=NC,求证:AB=AC4、已知线段BC和BC上的高AD, BC=4cm, AD = 3cm,求作等腰三角形ABC5、如左下图,na=36。,zc= 72

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论