三角形及其性质ppt_第1页
三角形及其性质ppt_第2页
三角形及其性质ppt_第3页
三角形及其性质ppt_第4页
三角形及其性质ppt_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、三角形及其性质三角形及其性质常考知识梳理常考知识梳理1.三角形分类三角形分类(1)按角分类:三角形按角分类:三角形 不等边三角不等边三角形形(2)按边分类:三角形按边分类:三角形 直角三角形直角三角形钝角三角形钝角三角形锐角三角形锐角三角形底和腰不等的等腰底和腰不等的等腰三角形三角形等腰三角形等腰三角形等边三角形等边三角形2.三角形的性质三角形的性质(1)三角形中任意两边之和)三角形中任意两边之和_第三边,任意两第三边,任意两 边之差边之差_第三边。第三边。(2)三角形的内角和为)三角形的内角和为_,外角与内角的关,外角与内角的关系:系: 大于小于180三角形的一个外角等于与它不相邻的两个内角

2、的和三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角三角形的一个外角大于与它不相邻的任何一个内角 。 (1)三角形的三条中线相交与一点,这点到顶点的距离等)三角形的三条中线相交与一点,这点到顶点的距离等于它到对边中点距离的于它到对边中点距离的_。 (2)三角形的三条角平分线相交于一点,这点)三角形的三条角平分线相交于一点,这点 距离相等。距离相等。 (3)三角形的三条高线相交于一点,钝角三角形三条高的)三角形的三条高线相交于一点,钝角三角形三条高的交点在三角形交点在三角形 _ 部。部。 (4)一个三角形有)一个三角形有_条中位线,它们有什么性质?条中位

3、线,它们有什么性质? 说明:三角形的中线、高线、角平分线都是说明:三角形的中线、高线、角平分线都是_ 。(填。(填“直线直线” 、“射线射线” 或或“线段线段”)3.三角形中的重要线段三角形中的重要线段2倍外3三角形的中位线平行于第三边,并且等于第三边的一半。线段到三边的练习试做 1.1.如图所示,图中三角形的个数共有(如图所示,图中三角形的个数共有( ) a a1 1个个 b b2 2个个 c c3 3 个个 d d4 4个个 c2小华在电话中问小明:小华在电话中问小明:“已知一个三角形三边长分别是已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积如何求这个三角形的面积”?小明提

4、示说:?小明提示说:“可通过作最长边上的可通过作最长边上的高来求解高来求解”小华根据小明的提示作出下列图形,其中正确的是小华根据小明的提示作出下列图形,其中正确的是()c3.已知四组线段的长分别如下,以各组线段为边,能已知四组线段的长分别如下,以各组线段为边,能组成三角形的是组成三角形的是() a1,2,3 b2,5,8 c3,4,5 d4,5,104如图,一个直角三角形纸片,剪去直角后,得到一如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则个四边形,则12_度度c270考点考点1: 三角形的三边关系三角形的三边关系 例例1.为了估计池塘岸边为了估计池塘岸边a、b两点的距离,小方在池塘

5、两点的距离,小方在池塘一侧选取一点一侧选取一点o,测得,测得oa=15米,米,ob=1o米,米,a、b间间的距离不可能是(的距离不可能是( ) a5米米 b10米米 c15米米 d20米米?a?b?oa例例2、在、在abc中,中,ac5,中线,中线ad7,则,则ab边的取值范围是边的取值范围是( )a、1ab29 b、4ab24 c、5ab19 d、9ab19d解题思路:在解三角形的有关中线问题时,如果不能直接求解,则解题思路:在解三角形的有关中线问题时,如果不能直接求解,则常将中线延长一倍,借助全等三角形知识求解,(或过这个中点做常将中线延长一倍,借助全等三角形知识求解,(或过这个中点做三角

6、形的中位线),这也是一种常见的作辅助线的方法。三角形的中位线),这也是一种常见的作辅助线的方法。abcdabcdae 1.现在四根木棒,长度分别为现在四根木棒,长度分别为3 cm、4 cm、7cm、9 cm,从中任取三根木棒,能组成三角形的个数为从中任取三根木棒,能组成三角形的个数为() a1个个b2个个c3个个d4个个 2一个三角形的两条边长分别为一个三角形的两条边长分别为3和和7,且第三边的边,且第三边的边长为整数,这样的三角形的周长的最小值是长为整数,这样的三角形的周长的最小值是() a14 b15 c16 d17b练一练练一练b解析解析 设第三边的长为设第三边的长为x,则,则73x73

7、,所以,所以4x10.又又x为整数,所以为整数,所以x可取可取5,6,7,8,所以这个三,所以这个三角形的周长的最小值为角形的周长的最小值为15. 例1如图,在abc中, ef/ab, ,则 的度数为( ) a b. c. d. 50。?60。?30。40。90c。150 。?bd考点2:三角形的内角和及其推论 例2如图1,a=65,b=75,将纸片的一角折叠,使点c落在abc内,若1=20,则2的度数为( ) a60 b80 c90 d100图1ac变式练习 变式变式1.如图如图2所示,将所示,将abc沿着沿着de翻折,若翻折,若 1+2=80 则则b=( )度)度变式变式2:如图:如图3所

8、示,将所示,将abc沿着沿着de折叠,点折叠,点b落在落在点点b,已知已知1+2= 100 ,则,则b= _?度。由此可发现图中的由此可发现图中的1+2等于翻折等于翻折角的二倍角的二倍?f?g?b?a?e?c?d 2 1?b图?2?b?a?e?c?d 2 1?b图?34050练一练练一练1.如图如图1,将一副三角板按图中方式叠放,则角,将一副三角板按图中方式叠放,则角 等于()等于() a30 b45 c60d75 ( 图图1) ( 图图2)2.如图,在如图,在abc中,中,cd是是acb的平分线,的平分线,a80,acb60,那么,那么bdc( )a80 b90 c100d110dd考点考点

9、4: 三角形中的重要线段三角形中的重要线段 例例1已知四边形中已知四边形中abcd中,中,rp分别是分别是bc、cd上的点,上的点,ef分别是分别是ap、rp的中点,当点的中点,当点p在在cd上从上从c向向d移动而移动而r不动时,那么下列结论成立的是(不动时,那么下列结论成立的是( ) a. 线段线段ef的长逐渐增大的长逐渐增大 b. 线段线段ef的长逐渐减小的长逐渐减小 c. 线段线段ef的长不变的长不变 d.线段线段ef的长与点的长与点p的位置无的位置无关关c?f?e?a?b?c?d?r?p练一练练一练1.在在abc中,中,d、e分别是分别是bc、ac的中点,的中点,bf平分平分abc,交

10、,交de于点于点f,若,若bc=6,则,则df长是(长是( ) a.2 b.3 c. d.42.在在abc中,中,ad为为bc边的中线,若边的中线,若abd与与adc 的周长差为的周长差为3,ab=8,则,则ac的长为的长为 ( ) a5 b.7 c .9 d .5 或或 1 1?f?d?e?b?c?a?bd52三角形中的探究问题 例1.观察下列图形,则第观察下列图形,则第n个图形中三角形的个图形中三角形的个数是(个数是( ) a.2n+2 b.4n+4 c.4n-4 d.4n 第3个 第2个 第1个d 例例2.如图(如图(1),在矩形),在矩形abcd中,动点中,动点p从点从点b出发,出发,

11、沿沿bc、cd、da运动至点运动至点a停止,设点停止,设点p运动路程为运动路程为x,abp的面积为的面积为y,如果,如果y关于关于x的函数图象如图(的函数图象如图(2)所示,那么所示,那么abc的面积是(的面积是( ) a.10 b.16 c.18 d.20a图?1图?2课堂检测课堂检测 1现有长分别为现有长分别为16cm,34cm的两根木棒,要从下列的两根木棒,要从下列木棒中选取一根钉一个三角形的木架,应选取哪一根木棒中选取一根钉一个三角形的木架,应选取哪一根( ) a16cm b34cm c18cm d50cm 2.一个三角形三个内角的度数之比一个三角形三个内角的度数之比2:3:7,这个三

12、角形一这个三角形一定是(定是( ) a.直角三角形直角三角形 b.等腰三角形等腰三角形 c.锐角三角形锐角三角形 d.钝角三角形钝角三角形 3以三条线段以三条线段3、4、x5为这组成三角形,则为这组成三角形,则x的取的取值为(值为( )。)。bd6x12 所剪次数所剪次数1234n正三角形个正三角形个数数471013an4.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,如此继续下去,结果如下表: 则an= (用含n的代数式表示).3n+1 5.如图:如图:abc在中,在中,abc和和acb的平分线相交于的平分线相交于点点o,过点,过点o作作efbc,交,交ab于点于点e,交,交ac于点于点f,过,过点点o作作odac于点于点d,下列四个结论:,下列四个结论: boc=90+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论