




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、latin squares, cubes and hypercubesjerzy wojdymarch 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes2definition and examplesna is a square array in which each row and each column consists of the same set of entries without repetition.march 31, 2007jerzy wojdylo, latin squares, cubes and hy
2、percubes3existencendo latin squares exist for every +?nyes. march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes4operations on latin squares of a latin square is a upermutation of its rows, upermutation of its columns,upermutation of its symbols. (these permutations do not have to be the
3、 same.) is iff its first row is 1, 2, march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes5enumeration of lsnhow many latin squares ( rectangles) are there?nif order 11brendan d. mckay, ian m. wanless, “” 2004(?) (show the table on page 5)/wiki/latin_square#the_numb
4、er_of_latin_squaresnorder 12, 13, open problem.march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes6enumeration of ls1234567891011 1114569408 16942080 535281401856 377597570964258816 7580721483160132811489280 5363937773277371298119673540771840n! (n-1)! times the number of reduced latin s
5、quares march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes7orthogonal latin squaresntwo latin squares = and = are iff the 2 pairs ( , ) are all different.march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes8orthogonal ls - useful property two latin squares are orthogonal iff
6、 their normal forms are orthogonal. (you can permute symbols so both ls have the first row 1, 2, , )nno two 22 latin squares are orthogonal.1221march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes9orthogonal latin squaresnthis 44 latin square does not have an orthogonal mate.123423413412
7、41231234march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes10orthogonal ls history 1782nleonhard eulermarch 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes11orthogonal ls history 1782nleonhard euler, originally published in verhandelingen uitgegeven door het zeeuwsch genootsc
8、hap der wetenschappen te vlissingen 9, middelburg 1782, pp. 85-239also available in: commentationes arithmeticae 2, 1849, pp. 302-361opera omnia: series 1, volume 7, pp. 291-392 march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes12orthogonal ls history 1900-01ngaston tarry verified case
9、 =6. compte rendu de lassoc. franais avanc. sci. naturel 1, 122-123, 1900. compte rendu de lassoc. franais avanc. sci. naturel 2, 170-203, 1901. ntwo years of sundays.march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes13orthogonal ls history 1959nin 1959, bose and shrikhande constructed
10、 a pair of orthogonal latin squares of order 22. nthen parker constructed a pair of orthogonal latin squares of order 10. npicture (next slide) orhttp:/www.cecm.sfu.ca/organics/papers/lam/paper/html/nytimes.htmlmarch 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes14orthogonal ls nyt 4/26/
11、1959march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes15orthogonal ls history 1960n1960 r.c. bose, s.s. shrikhande, e.t. parker, , canadian journal of mathematics, vol. 12 (1960), pp. 189-203. nthere exists a pair of orthogonal ls for all +, with exception of = 2 and = 6.march 31, 2007
12、jerzy wojdylo, latin squares, cubes and hypercubes16mutually orthogonal ls (mols)na set of ls that are pairwise orthogonal is called a set of ().the largest number of mols is 1.march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes17mutually orthogonal ls (mols)if is prime, then there are
13、1 -mols.nproofconstruction of =,=1, 2, , 1: = + (mod ). if = , prime, then there are 1 -mols.if there are 1 -mols, then = , prime.march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes18mutually orthogonal ls (mols)let n( ) be the number of mols that exist of size .: find n( ) for march 31
14、, 2007jerzy wojdylo, latin squares, cubes and hypercubes19mols lower bounds for n(n)020406080100120140160180047498769615406080100120771802135486666632224268210261016264365636761067542467671247796144566666676264666610612671661087575761276769828486881087148168810246666666611103057076130150819012531576
15、13676713125527261127817219214345566686615456567776716156767676146171636769681361569196183456666766191855878861386178198march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes20completion problemsnwhen can a latin rectangle with entries in 1, 2, , be completed to a latin square?1345351251341
16、2344312march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes21completion theoremslet any latin rectangle with entries in 1, 2, , can be completed to a latin square.nthe proof uses halls marriage theorem or transversals to complete the bottom rows. the construction fills one row at a time.
17、 march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes22completion problems nthe good:1234431221433421march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes23completion theoremslet ,2, n6nj. arkin, e. g. strauss, the fibonacci quarterly, vol. 12 (3) (1974): 288-292.nj. arkin, e.
18、 g. strauss, the fibonacci quarterly, vol. 19 (3) (1981): 281-293.nm. trenkler, , czechoslovak mathematical journal, 55 (130) (2005), 725-728.nall produced essentially the same theorem:march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes33orthogonal hypercubes n2, n6there exists a set of
19、 orthogonal latin -hypercubes of order , 2 and march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes34orthogonal hypercubes n2, n61+1 = (march 31, 2007jerzy wojdylo, latin squares, cubes and hypercubes35orthogonal hypercubes n = 6nwhat about = 6? nj. kerr, , the fibonacci quarterly vol. 20. no. 4 (1982): 360-362.nsimilar theorem.nexamples of three orthogonal latin cubes and four ort
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件开发技术交流题目
- 工程经济实际应用考题试题及答案
- 国际贸易实务案例分析测试卷及解析
- 经济学与统计方法试题及答案
- 水利水电工程投资风险识别试题及答案
- 乡村旅游+农业特色产业融合协议
- 2025年经济法概论新趋势试题及答案
- 行政管理团队精英试题及答案
- 2025年中级经济师学习资源试题及答案
- 文职基本知识考试试题及答案
- JJF(陕) 054-2021 人体静电综合测试仪校准规范
- 美国制造业经济2024年度报告-2024-12-宏观大势
- 《电工与电子技术》期末考试复习题库(含答案)
- 我的家乡河南许昌
- 2024年版水利水电工程标准施工招标文件技术标准和要求(合同技术条款)
- 民航技能大赛(ARJ机型)理论考试题库(含答案)
- 儿科住院患者VTE防治管理制度
- 《医学检验专业英语》课程教学大纲
- 《建筑主体结构检测》试题及答案3
- 砂石料车辆运输协议书(3篇)
- 乳品评鉴师技能竞赛理论考试题库500题(含答案)
评论
0/150
提交评论