



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习必备欢迎下载从一道高考压轴题引发的思考导读 高考大题源于课本,怎样与小题一脉相承?怎样提高解大题的能力?能否让后进生也容易解大题?08 年广东省高考数学(理科)第21 题是压轴题:设 p, q 为实数,,是方程 x 2pxq0 的两个实根,数列 xn 满足 x1 p, x2p 2q ,xnpx n 1 qxn2 (n3,4,) 。(1)证明:p,q ;(2)求数列 xn 的通项公式;( 3)若 p 1, q1 ,求 xn 的前 n 项和 Sn 。4第( 1)小问用二次函数的二根式容易解决;第( 2)小问要求学生掌握由数列相邻三项的线性关系式求其通项公式的方法,注意利用第(1)小问的结论;第
2、( 3)小问显然是在第( 2)小问的基础上,由数列 xn 的通项公式求其前 n 项和 Sn 。思考一:试题源于课本,特别是高考题,那么由数列相邻三项的线性关系式求其通项公式的源头呢?可以发现新课标必修5(20XX年版)第69 页B 组的第6 题:已知数列 an 中,a15, a22 , an2an 13an 2( n3) ,试研究,能否写出它的通项公式?这是课本上已知数列相邻三项的线性关系式,研究它的通项公式的问题,其中系数为常数,它就是高考题的源头,并且高考题中的常系数已经字母化了。下面是此题的解答。解:可得 an3an 1(an 13an 2 ) , anan 13( an 1 an 2
3、) (n 3) ,即数列 an3an 1 是首项为 a23a113 ,公比为 -1 的等比数列, anan 1 是首项为 a2a17 ,公比为 3 的等比数列,an3an 1(a2 3a1 )( 1)n 213( 1)n 1a an 17 3n 2,其中 n2, n学习必备欢迎下载由上二式消去 an 1 得: an1 13(1)n 173n 1 (n 2) ,4上式满足 a1 5 ,an1 13(1) n 173n1 (n N *) .4上面解法中看出两个等式 an3an1( an 13an 2 ) 和anan 13( an 1an 2 ) 是关键,须要很强的洞察力。高考题第( 2)小问的解法
4、如下。解:(2) xn px n 1qx n 2()xn 1xn 2 (n3) , xnxn 1( xn 1xn 2 ) , xnxn 1( xn 1xn 2 ) (n 3) ,xnxn 1( x2x1 )n 22n 2n ,xnxn 1( x2x1 )n 2n (n 2) ,由上二式消去 xn 1 得: () xnn 1n 1 (n2) ,n1n1当时,当时,xn(n2) ,满足 x1p ;xnn(n 2),得xnxn 11 (n 2) ,xn 1nn 1即 xnn 是首项为 x12,公差为 1 的等差数列,xnx1(n1) 1n1 (n1) ,nx n( n1 )n (n1),n1n1,(
5、 综上所述, xn)N*) . ( nn(n 1) , ( )这种解法的关键也是看出两个等式xnxn 1(xn 1xn 2 ) 和xnxn 1( xn 1xn 2 ) ,同样须独到的洞察力。第(3)小问是在1 时,求数列 xn 的前 n 项和 Sn ,用错位2相减法就可解决,这是学生熟悉的方法,此文不谈。上面二种解答,考察学生的观察力,表现为洞悉条件本质、发现内在规律的解题能力。学习必备欢迎下载思考二:解大题的思想源自何种小题,有没有通性通法?考虑由数列相邻两项递推公式求通项公式的问题。例 1:已知数列 an 满足 a11 ,an2an 11 (n2) ,求数列 an 的通项公式。解: an
6、12an 12 2(an 11) (n2) ,an12),知数列 an1 是公比为 2 的等比数列,an2 (n11an1 (a11)2n 12 2 n 12n , an2n1 (n N *) .总结:本解法体现了学生的观察力,由an2an 1 1看出等比数列式 an 12( an 11) 是关键,实质是把 an 2an 11中的 1 变形,构造等比数列。例 2:已知数列 an 满足 a11 ,an8an 11 (n2) ,求数列 an 的通项公式。分析:观察不出等比数列式,考虑把an 8an 11 (n 2) 中的 1 变形,构造一个 an 加常数的等比数列?所以尝试给an 加某一个常数。解
7、: an8an 118(an 11) ,1 得1 ,181 ) ,由an8( an 18777知数列 an1 是公比为 8 的等比数列,78n, an 8nan 1(a11 ) 8n 18 8n 11 .7777171 ) 是关键,实质是把总结:本题由 an8an 11 算出 an8(an 177an 8an 1 1中的 1 拆分给 an 和 an 1 ,构造等比数列。例 3:设 a0 为常数,且 an3n12an1 (n 为正整数),证明:对任意 n1, an1 3n(1) n1 2n (1)n2n a0 5分析:能否把递推公式中的变数3n 1 适当拆分给 an 和 an 1 ,构造一个新的
8、等比数列呢?学习必备欢迎下载解: an3n 12an 1 (n N *)anm 3n3n 12an 1m 3n2an 1 (1 3m)3n 12(an 113m 3n1 ) (m 为常数)13m 得 m1 , an3n23n 1 ) ( n N *)由 m2(an 12555即数列 an3n 是公比为 -2 的等比数列,首项为 a030,3n530 ) ( 2) n5an(a0(a01) ( 2) n ,555an3n( 2)n( 2)n13n( 1)n 12n (1)n2na0 ( n N *)55a05把已知条件中相邻二项的关系式换成相邻三项的关系式就是必修 5(20XX 年版)第 69
9、页 B 组的第 6 题了。分析:考虑能否把其中的 2an 1 适当拆分给 an 和 an 2 ,构造一个新的等比数列?解: an2an 13an 2 ( n3)anm an1 ( 2m)an 13an 2( 2m)( an 13an 2 )(m 为常数),23m由 m得 m 22m3 0 ,解得 m 3或 m1,2man3an 1(an 13an 2 ) , anan 13( an 1an 2 ) (n 3) ,接下来的过程同前解答。总结:上面的等式是算出来的,而不是观察到的,可见,没有火眼金睛,也能解决这一类问题,解决高考压轴题。上面例题的解法一脉相承,本质同宗,这就是通性通法。思考三:怎样
10、有效提高学生解大题的能力?大题的解题思想来自小题, 掌握了小题的解法, 就可以升华到解大题。小题只涉及知识的简单应用,在熟悉基础知识、基本方法与技能的基础上,每个人都可以掌握。掌握某个知识的小题的解法,就相当于头脑中种下了一棵小树苗。把这个简单小题的条件作个变式,复学习必备欢迎下载杂化,小树就长大了,若能解决复杂化的问题,就相当于把小树培育成了大树。把条件an2an 1 ( n2) 作个变化,增加常数项成为an2an 11 (n2) ,变数替换常数项成为an3n 12an 1 (n2) ,数列的项替换变数成为an2an 13an 2(n3) ,再进一步,常系数字母化成为xnpxn 1qxn 2
11、 (n3,4,L ) ,小题就成了大题。等比数列的相关知识,从简单应用开始,一步步深化,变成了高考压轴题,这是一棵小树苗的成长过程。 简单训练题到深化训练题的一步步递进, 逐层的解答就在头脑中就把小树培育成了大树。 通性通法的大树多了, 解大题的能力自然就有了,怎样培育这样的大树呢?1、加强基础知识的巩固和提高课本是考试内容的载体, 是高考命题的依据, 也是学生智能的生长点,是最有参考价值的资料。 有相当多的高考试题是课本中基本题目稍作变形得来的, 其用意就是引导学生重视基础, 切实抓好三基 基础知识、基本技能和基本方法。“三基”是解题能力的源头,在一定意义上说,所谓解题能力,就是基础知识、基
12、本技能和基本方法的熟练化。 “三基”的缺陷对于解题而言是致命的, 是解题能力不强的主要成因, 也是提升解题能力的最主要障碍。在解题时“三基”的缺陷主要表现为:(1)曲解题意例 4.已知集合 A y | yx21,B( x, y) | x2( y1)20 ,则A B ();AB (0, 1)C 1D 1,)此题虽然简单,但是有学生会掉入陷阱,选择错误选项B或 C,是学生对集合的“代表元素”这个概念未理解到位。正确解答是集合A 和 B 中的元素不同,没有公共元素,选A。学习必备欢迎下载(2)表达错误例 5. 函数 f (x) 的定义域为 R,已知 f (x1) 为奇函数,当x<1 时,f (
13、 x)2x2x1,求 f ( x) 的表达式;若学生对“奇偶性、解析式和分段函数”三个概念中有一个理解模糊,在解答时就会出现表达不完整甚至错误。2、强化变换训练,注重迁移教学解题能力生成的主要平台是问题解决过程。 如果解题训练的教学驴拉磨原地绕圈, 缺少思维的递进或变换, 那将直接影响学生的解题能力向纵深或横向发展。 教学设计要注重思维的纵向梯度与横向跨度,尽可能符合学生的认知规律,给学生留下思维、探索的空间。变换训练有以下两层主要含义:(1)变换形式,纵向迁移同一知识点的练习设计要注意体现 “较易 中 较难”的思维和方法层次, 甚至更多层次。 习题训练一定要注意知识的整体连贯性,防止“跳跃式
14、”或“蜻蜒点水式”的随意做题。习题教学坚持走“起点低、落点高”的成长路子,步步为营,稳扎稳打,在变换训练中实现能力的稳步迁移。例 6下面对有关“函数的值域”的习题设计就较好地体现了这种层次性:求函数 y lg( x2 1) 的值域;已知函数 ylg( x2a) 的值域为 (1,) ,求实数 a 的取值范围;已知函数 ylg( x2a) 的值域为 R,求实数 a 的取值范围;已知函数 ylg( ax2ax 1) 的值域为 R,求实数 a 的取值范围。若是直接提问第小题,会难倒一大片,即使会解,也会是对知识断层式的理解。第小题还可以与下题“已知函数ylg( ax2ax1)学习必备欢迎下载的定义域为
15、 R,求实数 a 的取值范围。”作横向比较。(2)变换思维,横向迁移同一知识点要从多角度加以审视,即如何在不同的情境中理解和运用知识。解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法,解决同一数学问题的多条途径,在分析解决问题的过程中,构建知识的横向联系,养成多角度思考问题的习惯。例 7若函数 f ( x)ax33(a1)x26x (0x2) 在 x=0 处取得最大值,求实数 a 的取值范围。本题可从两个角度来思考,看作求函数在闭区间上的最值问题;看作 f (x) f (0)(0 x 2) 恒成立的问题。 实施起来第一种方法很难,第二
16、种方法比第一种方法更可行。思考四:有效提高后进生解大题能力的可行性?按上面的教学原则, 虽然都强调低起点, 但接下来思维的梯度与跨度不一定会适合每个人, 特别是学生水平有明显差异的班级。 思维的梯级有高低,有的学生踮起脚仍会跳不上。可见梯级高了,就有部分学生跟不上学习, 即使是小部分, 在接下来的时间那也是茫然无所事事。现代的教育是个性化教育, 要让每个学生在教学过程中真正完全的体验、感悟,有所生成、创造,当然不能放过每一个学生。看来只有降低梯级的高度, 让后进生也学得上。 但一个梯级分成多个梯级的教学是要成倍增加教学时间的,上层学生就会有老牛拉慢车的感觉,出现冷场。对学生有明显差异、非“橄榄
17、形”的班级教学,总免不了出现下层生“吃不了”或上层生“吃不饱”的现象,这就有分层分班教学的必要。按数学水平把上下层学生平均分开, 就能把学生的差异缩小一学习必备欢迎下载半。针对下层生的认知基础与能力,在教学设计中,降低思维跳跃的高度,给学生更多的时间去感悟与发现。举个例子,在基本不等式的变式应用中, 可由“求函数 y x1 的3x3x的值域”;也可多梯级递进,值域”直接跳跃到“求函数 y5x 5x 2x 2由“求函数 yx1 的值域” “求函数 y1 的值域” “求x 2xx 2x函数 y3x1 的值域” “求函数 y5x5 的值域” “求xxx1函数 y1的值域” “求函数 y3x3的值域”,一大步x 25xx 25x55碎成了五小步。在低梯级的教学中,以时间换难度,后进生能在更长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2型糖尿病肾病患者血浆Hcy水平与骨密度的相关性研究
- MCAM与HSPA12A对肝细胞癌诊断及预后的价值研究
- 建筑预应力施工后期处理方案
- 难点解析-人教版八年级上册物理物态变化《升华和凝华》专题训练试卷(含答案解析)
- 基于CCSEM-EPAS工业-背景区颗粒物特征对比与重金属损伤评估
- 麻雀搜索算法的改进及应用研究
- 基于神经辐射场的大尺度三维模型重建技术研究及应用
- 屋顶防水施工现场管理方案
- 2024-2025学年高中物理 第9章 固体、液体和物态变化 4 物态变化中的能量交换说课稿2 新人教版选修3-3
- 考点解析人教版九年级《电功率》定向测试试题(详解)
- 2023中国临床肿瘤学会(CSCO)非小细胞肺癌诊疗指南
- 中兴信息安全管理制度
- 驻车空调锂电池培训
- 瓦楞纸箱包装项目可行性分析报告
- 冷链仓储物业管理费及增值服务合同
- 2025-2030中国氢燃料电池行业市场发展分析及发展趋势与投资前景研究报告
- 国际压力性损伤溃疡预防和治疗临床指南(2025年版)解读
- DG∕TJ 08-206-2002 住宅建筑围护结构节能应用技术规程
- 胎儿生长受限诊断与临床管理
- 传承人经纪合同10篇
- 《煤矿机械(第二版)》中职煤矿技术专业全套教学课件
评论
0/150
提交评论