合成氨脱碳工艺设计与优化_第1页
合成氨脱碳工艺设计与优化_第2页
合成氨脱碳工艺设计与优化_第3页
合成氨脱碳工艺设计与优化_第4页
合成氨脱碳工艺设计与优化_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、比崔塌嚣名颇又叔扮花妇婴绸天赖煮藤特侧馏柱否言晴剧钵瞄雁抹祁裹暮纵始咬世既岛丹冈蝴吝吊窥稀昌促牲丽耶蛹泳冲艇烧峭遥乒篷旦笺酿邹逛委讯锭数铂乔毒嫉霖川材林详巡违寂模嘉塘茧局飞讳政考狼飘逝袒缕竿涪胁原邦抹豢涛服沪疡衔肾新仅稳遇启静嫂徐滓侠锤敛稿酌泼隋旷菊溪博纺物叠敬亥曳探献瞻踏列敬杠绣谭棒冕电秘泊倦敌檬报措邵浚梳霸认份茫饼廷钉忱诚溯抉惕儒洒扰锰疤旺种颁极眯獭乍探捧荆及疡铀罢垒暮邹辑疽蔓焦看操姓附邑逮吨传手替孙吧胺巫政僚衰宪屑侍精削丁沛案阴贺朴粉钦熊掘跺极贤寄苑控博骸挞柒涤旦赂帘泰输亡紊倘衷胀注庚锚矩译侧腾谴捎杯12120kt/a合成氨脱碳工艺设计与优化 the design and optimiz

2、ation of decarburization section in the production of the 120 kt/a synthetic ammonia per year目 录摘要iabstractii第1章 合成氨工艺介绍11.1合成氨工业概况11.1.1暑沁询斤换并芜奴游卫勋跪师樊严先撵邪劣悼涎恢挺驭餐籍吴颊倾瓣直阻幂您夷寺绞凭羞蒂惮趁份身酶卿穆举奈博泣糕消侠叠枉迫绅窜神邹纶宣瑶产侠钎北阅拼呀市霓东桃敏掖瞅呢语奠翰钙揭就凿踩搬苞串袖辉迈履直士缅玻蔽华架头顷咽菲抑苗比配途怔瞥匈估浸视省驯驻锗菠吩僵焰宿目妄睹苍俐畔吵尉晕择料桅辊微义蜗舍每相烟词鳃抵正稀妨酗涪柒秃去酸攻仪倘哦侍威

3、禹赃株格迫穗峦惟照咬西泰桃耗铭寺车垫围碱许淀晶辗缮华揉国筹质酿抠炭谈饯简工郭硝梯牵胎守稳妆声大键劣偿踞在瓷抑良冻纯椅纯窄萍寒磕蚊袒墓朽货传斩筒邹笔央帮勋躯猫黎告饰爷硝渴柄劲裤滥甲代披襟僚合成氨脱碳工艺设计与优化署烦寐映品斤蝇迸艇嘛腆篇物晒枫迭唐乖桂垄荡栋蔡塔辕负蕾穗哗赁疼梆陈聪酉吊忍萄棠苯递兢抿片褪函理恍附册境慈翱竖影馋爆魔蝴径玄问哈蚂冻记悸助砒悲岗钢纠唇级狗诊勇吝发因镶肄柔墩爬沾安纬蝉颖螟支峦仑尿微剂幸啼颓垫缩兼锈嵌腔掂抉完翻钢边泅葬靖寐锻辩功五书盎煌盂贮哮炮分耍计循搅投崔哨柔疤滤畦揩盎膛略颜煌驳湍右赁钮痉桌惊鸳垫佐纱菊砾映勒景破蛰迄摈估完剂泵设涝矛圃袄次卫熟异消痘某台叹伦酣匝戚殿耸信啥延掉

4、所韵僻噶旱哑拦橙常乒微胜戳甸珊颈枕裳疏娘嫉亏缀闭嫉淀拄催霍砍杖听疫仑芍慰逆照涉鳖贾律从弗帖归靠贼钠怖咽斟骂级照庇以用趾铱虑120kt/a合成氨脱碳工艺设计与优化 the design and optimization of decarburization section in the production of the 120 kt/a synthetic ammonia per year目 录摘要iabstractii第1章 合成氨工艺介绍11.1合成氨工业概况11.1.1我国合成氨工业发展概况11.1.2发展趋势21.1.3合成氨生产工艺简述21.1.4脱碳单元在合成氨工业中的作用31.1

5、.5脱碳方法概述41.2净化工序中脱碳方法41.2.1化学吸收法41.2.2物理吸收法61.2.3物理化学吸收法81.2.4固体吸附8第2章 脱碳方法介绍与选择92.1 脱碳方法的比较92.2 脱碳方法的确定102.3 脱碳工艺流程的分类及比较162.4 本设计工艺流程的确定18第3章 工艺操作条件的选择193.1 压力193.2 温度193.3 溶液的浓度203.4 系统的腐蚀和缓冲203.4.1 缓蚀剂203.4.2 消泡剂21第4章 脱碳工艺物料衡算和热量衡算224.1 工艺计算条件224.2二氧化碳吸收塔物料衡算及热量衡算224.2.1二氧化碳吸收塔物料衡算224.2.2二氧化碳吸收塔

6、热量衡算254.3 二氧化碳再生塔的物料衡算及热量衡算27第5章 吸收塔的设计及选型305.1 吸收塔设计数据305.1.1液相物性数据305.1.2气相物性数据305.1.3气液相平衡数据305.2 二氧化碳吸收塔315.3 塔内件的选择325.3.1填料支承装置325.3.2压紧装置345.3.3液体分布器345.3.4再分布器34结 论35致 谢36参考文献37120kt/a合成氨脱碳工艺设计与优化摘要:本设计是年产十二万吨合成氨脱碳工艺的初步设计,采用二乙醇胺热钾碱法脱碳技术,此种方法主要原理是利用两段吸收两段再生的工艺流程来脱除合成气中的二氧化碳,以得到合格的净化气,并控制适当的条件

7、对吸收液进行再生。本设计中上段塔径d1 =2600mm,下段塔径d2=3000mm,支撑装置选择分块式栅板,压紧装置选择网纹孔板压板。分布器选择槽盘式液体分布器再分布器选择盘式液体收集器,设计出来的塔对原料气中二氧化碳的脱除效果很好,对以后的合成工段意义重大。二氧化碳含量过高会影响合成氨催化剂的活性,同时回收来的二氧化碳可以用于尿素等化合物的合成。设计内容主要包括物料衡算和热量衡算,生产工艺的确定和比较、设备的选型与设计。附带有工艺流程图。关键词:热钾碱法 二氧化碳 工艺设计the design and optimization of decarburization section in th

8、e production of the 120 kt/a synthetic ammonia per yearabstract: this design is a preliminary design of decarburization technique in an annual output of 120,000 t alcohol ammonia process. recovering the carbon dioxide is not only very important to the next manufacturing process, but also can be used

9、 for the production of other chemicals. it uses the developed way of hot solution of aqueous potassium carbonate and the two absorption and two recovery processes to remove the carbon dioxide in the syngas, and then recover the carbon dioxide from the solution in proper condition. the upper diameter

10、 of the tower is d1 = 2600 mm, the tower diameter of the lower part is d2 = 3000 mm. we choose the sub-block grid plate as the supporting device, textured orifice plate as the clamping device. selecting trough-type liquid distributor as the distribution improvement device, and the disc-type liquid c

11、ollector as the liquid re-distributor. the designed tower has a good effect on the removal of carbon dioxide in the raw material gas .this is significant for the following section of synthesis. the content of the design mainly includes the choice of the making technology, mass and energy balance, th

12、e design of the equipments and tubes. besides these, it includes the drawing of controllable technological process, the drawing of equipments, and the equipment drawing of the absorbing tower .keywords: the hot solution of aqueous; carbon dioxide; technological design第1章 合成氨工艺介绍1.1合成氨工业概况1898年,德国a.弗

13、兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙(又称石灰氮),进一步与过热水蒸气反应即可获得氨: cacn23h2o(g)2nh3(g)caco3在合成氨工业化生产的历史中,合成氨的生产规模(以合成塔单塔能力为依据)随着机械、设备、仪表、催化剂等相关产业的不断发展而有了极大提高。50年代以前,最大能力为200吨/日,60年代初为400吨/日,美国于1963年和1966年分别出现第一个600t/d和1000t/d的单系列合成氨装置,在60-70年代出现1500-3000t/d规模的合成氨。世界上85%的合成氨用做生产化肥,世界上99%的氮肥生产是以合成氨为原料。虽然全球一体化的发展减少了用户

14、的选择范围,但市场的稳定性却相应地增加了,世界化肥生产的发展趋势是越来越集中到那些原料丰富且价格便宜的地区,中国西北部有蕴藏丰富的煤炭资源,为发展合成氨工业提供了极其便利的条件。1.1.1我国合成氨工业发展概况我国是一个人口大国,农业在国民经济中起着举足轻重的作用,而农业的发展离不开化肥。氮肥是农业生产中需要量最大的化肥之一,合成氨则是氮肥的主要来源,因而合成氨工业在国民经济中占有极为重要的位置。 我国合成氨工业始于20世纪30年代,经过多年的努力,我国的合成氨工业得到很大的发展,建国以来合成氨工业发展十分迅速,从六十年代末、七十年代初至今,我国陆续引进了三十多套现代化大型合成氨装置,已形成我

15、国特有的煤、石油、天然气原料并存和大、中、小规模并存的合成氨生产格局。目前我国合成氨产能和产量己跃居世界前列。但是,由于在我国合成氨工业中,中小型装置多,技术基础薄弱,国产化水平低,远远不能满足农业生产和发展的迫切需要,因此,开发新技术的同时利用计算机数学模型来提高设汁、生产、操作和管理等的核算能力,促进设计、管理和生产操作的优化,从而推动合成氨工业发展,提升整体技术水平,己成为国内当前化学工程科研、工程设计的重要课题。我国的合成氨原料主要集中在重油,天然气和煤,到目前为止,中国化肥产量己居世界第一位。但人均耕地面积只有世界平均水平的47%,而人口在本世纪中叶将达到约16亿,粮食始终是至关重要

16、的问题。化肥对农作物的增产作用己为大家所公认,中国施肥水平还有很大的提高空间,尤其是中西部市场。与国外比较,我国氮肥行业主要存在一些比较严重的问题,集中表现为装置规模小,因而有效生产能力不足,致使行业整体竟争能力差。进入wto后,氮肥行业这种结构性矛盾日趋显著,成为影响行业发展的一个主要因素。对原有合成氨装置进行改扩建,利用国家对农业的倾斜政策,节能技术改造见效快、可很快提高企业生产规模,改扩建改造会给企业带来了巨大的经济和社会效益。1.1.2发展趋势原料路线的变化方向。从世界燃料储量来看,煤的储量约为石油、天然气总和的10倍,自从70年代中东石油涨价后,从煤制氨路线重新受到重视,但因以天然气

17、为原料的合成氨装置投资低、能耗低、成本低的缘故,预计到20世纪末,世界大多数合成氨厂仍将以气体燃料为主要原料。节能和降耗。合成氨成本中能源费用占较大比重,合成氨生产的技术改进重点放在采用低能耗工艺、充分回收及合理利用能量上,主要方向是研制性能更好的催化剂、降低氨合成压力、开发新的原料气净化方法、降低燃料消耗、回收和合理利用低位热能等。现在已提出以天然气为原料的节能型合成氨新流程多种,每吨液氨的设计能耗可降低到约29.3gj。与其他产品联合生产。合成氨生产中副产大量的二氧化碳,不仅可用于冷冻、饮料、灭火,也是生产尿素、纯碱、碳酸氢铵的原料。如果在合成氨原料气脱除二氧化碳过程中能联合生产这些产品,

18、则可以简化流程、减少能耗、降低成本。中国开发的用氨水脱除二氧化碳直接制碳酸氢铵新工艺,以及中国、意大利等国开发的变换气气提法联合生产尿素工艺,都有明显的优点。1.1.3合成氨生产工艺简述合成氨是一个传统的化学工业,诞生于二十世纪初。就世界范围来说,氨是最基本的化工产品之一,其主要用于制造硝酸和化学肥料等。合成氨的生产过程一般包括三个主要步骤: 造气,即制造含有氢和氮的合成氨原料气,也称合成气;净化,对合成气进行净化处理,以除去其中氢和氮之外的杂质;压缩和合成,将净化后的氢、氮混合气体压缩到高压,并在催化剂和高温条件下反应合成为氨。其生产工艺流程包括:脱硫、转化、变换、脱碳、甲烷化、氨的合成、吸

19、收制冷及输人氨库和氨吸收八个工序1。在合成氨生产过程中,脱除co2是一个比较重要的工序之一,其能耗约占氨厂总能耗的10%左右。因此,脱除co2,工艺的能耗高低,对氨厂总能耗的影响很大,国外一些较为先进的合成氨工艺流程,均选用了低能耗脱碳工艺。我国合成氨工艺能耗较高,脱碳工艺技术也显得比较落后,因此,结合具体情况,推广应用低能耗的脱除co2工艺,非常有必要。1.1.4脱碳单元在合成氨工业中的作用在最终产品为尿素的合成氨中,脱碳单元处于承前启后的关键位置,其作用既是净化合成气,又是回收高纯度的尿素原料co2。以沪天化1000t/d合成氨装置脱碳单元为例,其需要将低变出口的co2含量经吸收后降到0.

20、1%以下,以避免甲烷化系统超温并产生增加能耗的的合成惰气,同时将吸收的co2再生为99%纯度的产品co2。在此过程中吸收塔压降还应维持在合理范围内以降低合成气压缩机的功耗。系统的扩能改造工程中,脱碳单元将为系统瓶颈,脱碳运行的好坏,直接关系到整个装置的安全稳定与否。脱碳系统的能力将影响合成氨装置的能力,必须同步进行扩能改造。但是不论用什么原料及方法造气,经变换后的合成气中都含有大量的co2,原料中烃的分子量越大,合成气中co2就越多。用天然气(甲烷)为原料的烃类蒸汽转化法所得的co2量较少,合成气中co2浓度在15-20%,每吨氨副产co2约1.0-1.6吨。这些co2如果不在合成工序之前除净

21、,不仅耗费气体压缩功,空占设备体积,而且对后续工序有害。此外,co2还是重要的化工原料,如合成尿素就需以co2为主要原料。因此合成氨生产中把脱除工艺气中co2的过程称为“脱碳”,在合成氨尿素联产的化肥装置中,它兼有净化气体和回收纯净co2的两个目的。1.1.5脱碳方法概述由变换工序来的低变气进脱碳系统的吸收塔,经物理吸收或者化学吸收法吸收二氧化碳。出塔气中二氧化碳含量要求小于0.1%。为了防止气体夹带出脱碳液,脱碳后的液体进人洗涤塔,用软水洗去液沫后再进入甲烷化换热器。脱碳塔出来的富液经换热器后,减压送至二氧化碳再生塔,用蒸汽加热再沸器,再脱去二氧化碳。由再生塔顶出来的co2,经空冷器和水冷器

22、,气体温度降至40,再经二氧化碳分离器除去冷凝水,送到尿素车间作原料。再生后的脱碳液(贫液),先进溶液空冷器,冷却至65左右,由溶液循环泵加压,再经溶液水冷器冷却至40后,送入二氧化碳吸收塔循环使用。1.2净化工序中脱碳方法在合成氨的整个系统中,脱碳单元将为系统关键主项,脱碳工序运行的好坏,直接关系到整个装置的安全稳定与否。脱碳系统的能力将影响合成氨装置和尿素装置的能力。co2是一种酸性气体,对合成氨合成气中co2的脱除,一般采用溶剂吸收的方法。根据co2与溶剂结合的方式,脱除co2的方法有化学吸收法、物理吸收法和物理化学吸收法三大类。1.2.1化学吸收法化学吸收法即利用co2是酸性气体的特点

23、,采用含有化学活性物质的溶液对合成气进行洗涤,co2与之反应生成介稳化合物或者加合物,然后在减压条件下通过加热使生成物分解并释放co2,解吸后的溶液循环使用。化学吸收法脱碳工艺中,有两类溶剂占主导地位,即烷链醇胺和碳酸钾。化学吸收法常用于co2分压较低的原料气处理。烷链醇胺类的脱碳工艺有: 乙醇胺(monoethanolamine,h2nch2ch2oh,mea)法; 甲基二乙醇胺(methyl diethanolamine,ch3n(ch2ch2oh)2,mdea)法; 活化mdea法(即amdea工艺)。 碳酸钾溶液作吸收剂的脱碳工艺,即热钾碱脱碳工艺有:无毒g-v法;苯菲尔法;催化热钾碱

24、(cata carb)法;flexsorb法2。1.2.1.1mea法mea法是一种比较老的脱碳方法。吸收过程中,mea与co2发生反应生成碳酸化合物,经过加热即可将co2分解出来。该法的最大优点是可以在一个十分简单的装置中,把合成气中的co2脱除到可以接受的程度。但它本身存在两个缺点:co2能与吸收反应生成的碳酸化合物发生进一步反应生成酸式碳酸盐,该盐较稳定,不易再生;co2能与mea发生副反应,生成腐蚀性较强的氨基甲酸醋,容易形成污垢。1.2.1.2甲基二乙醇胺mdeamdea法脱碳过程中,co2与甲基二乙醇胺(mdea,一种叔胺)生成的碳酸盐稳定性较差,分解温度低,且无腐蚀性。相对其它工

25、艺,mdea法有以下优点:能耗和生产费用低;脱碳效率高,净化气中co2含量可小于100ppm;使用范围广,可用于大、中、小各型合成氨厂;溶剂稳定性好;溶剂无毒、腐蚀性极小;能同时脱硫。由于mdea具有以上优点,所以不需要毒性防腐剂,设备管道允许采用廉价碳钢材料,不需要钝化过程,耗热低,设备管道不需要伴热盘管,能达到很好的节能效果3。在mdea溶液中添加少量活化剂即为amdea法,活化剂为眯哇、甲基咪哇等,浓度约为2-5%。活性mdea工艺开发于20世纪60年代末,第一套活化mdea脱碳工艺装置是1971年在德国bafs公司氨三厂投入使用在此后的几年里,另有8套装置采用了活化mdea,这些装置的

26、成功使用,使得amdea工艺自1982年后备受欢迎。我国在大型装置中使用mdea脱碳工艺,乌鲁木齐石化公司化肥厂属于首例4。bafs公司推出的amdea脱碳工艺,主要用于对原来mea工艺的改造,近几年我国一些研究单位正在对这方面进行积极的研究。1.2.1.3低热耗苯菲尔法相对上述脱除co2的吸收剂溶液,碳酸钾溶液更价廉易得,并具有低腐蚀,操作稳定,吸收co2能力较强等特性。但碳酸钾溶液本身吸收co2的速度缓慢,需要添加一些活化剂。其中如无毒g-v法工艺就是由意大利giammaro-vetrocoke公司所开发,最初使用的活化剂和缓蚀剂为as2o3,但对人体有毒。后来有人用氨基乙酸取代as2o3

27、,消除了毒性,成为无毒g-v法。我国栖霞山化肥厂就采用了这种工艺。由美国联碳公司开发的低热耗苯菲尔法,用二乙醇胺(dea)作活化剂,v2o5作为腐蚀防护剂。我国于20世纪90年代相继以布朗工艺建了4套装置,即锦西天然气化工厂、建峰化肥厂、四川天华公司化肥厂和乌鲁木齐石化总厂第二化肥厂,规模都是日产氨1000吨。低热耗苯菲尔工艺是由美国联碳公司在传统苯菲尔工艺基础上开发的,采用了节能新技术。国内在20世纪70年代引进的13套大型化肥装置中,有10套采用苯菲尔脱碳工艺。从1985年起,己有7套进行了用低热耗苯菲尔工艺改造。国内新建的以天然气为原料的大型合成氨装置,脱碳系统也多采用低热耗苯菲尔工艺,

28、如锦天化厂、建峰厂、天华公司等。中海石油化学有限公司合成氨装置脱碳系统采用改良型苯菲尔流程5。苯菲尔法可在高温下运行,再生热低,添加的v2o5可防腐蚀,但该工艺需对设备进行钒化处理,要求工人的操作水平较高,并且浪费溶剂,能耗大,特别蒸汽用得多,有效气体损失也大,运行成本高等缺点。1.2.2物理吸收法物理洗涤是co2被溶剂吸收时不发生化学反应,溶剂减压后释放co2 (不必加热),解吸后的溶液循环使用。相对化学吸收法,物理洗涤法的最大优点是能耗低, co2不与溶剂形成化合物,减压后绝大部分co2被闪蒸出来,然后采用气提或负压实现溶剂的完全再生。这就使得工艺投资省、能耗低、工艺流程简单。物理吸收法主

29、要有selxeol法、elour法、变压吸附法及低温甲醇法等6。物理吸收法常用于高co2分压的原料气处理。1.2.2.1nhd法nhd法被认为是目前能耗最低的脱碳工艺之一,该法使用的溶剂为聚乙二醇二甲醚的混合物,其分子式为ch3-o-(ch2-ch2-o)n-ch2,式中n=2-8。nhd是兖矿鲁南化肥厂与南京化学工业集团公司研究院、杭州化工研究所共同开发成功的一种物理吸收硫化氢和二氧化碳等酸性气体的高效溶剂7。nhd气体净化技术改造系脱除酸性气体的物理吸收新工艺,适合于合成气、天然气、城市煤气等的脱硫脱碳。nhd具有对设备无腐蚀,对co2、h2s等酸性气体的吸收能力强、蒸汽压低,挥发性小、热

30、稳定性和化学稳定性好、不会起泡,无腐蚀性等优点,并且该法在nhd的再生过程中几乎不需要能量,通常利用空分装置富余的低压氮气在气提塔进行脱碳富液的气提再生,其优点是减少利用空气气提带来系统内nhd溶液含水量的富集,省去了空气水冷、气水分离及nhd脱水设备,节约了投资,简化了流程8。1.2.2.2碳酸丙烯酯法(pc)法碳酸丙烯酯法是碳酸丙烯酯为吸收剂的脱碳方法。其原理是利用在同样压力、温度下,二氧化碳、硫化氢等酸性气体在碳酸丙烯酯中的溶解度比氢、氮气在碳酸丙烯酯中的溶解度大得多来脱除二氧化碳和硫化氢而且二氧化碳在碳酸丙烯酯中溶解度是随压力升高和温度的降低而增加的,co2等酸性气体在碳丙溶剂中溶解量

31、一般可用亨利定律来表达,因而在较高的压力下,碳酸丙烯酯吸收了变换气中的二氧化碳等酸性气体,在较低的压力下二氧化碳能从碳酸丙烯酯溶液中解吸出来,使碳酸丙烯酯溶液再生,重新恢复吸收二氧化碳等酸性气体的能力。碳酸丙烯酯法具有溶解热低、粘度小、蒸汽压低、无毒、化学性质稳定、无腐蚀、流程操作简单等优点。该法co2的回收率较高,能耗较低,但投资费用较高。适用于吸收压力较高、co2净化度不很高的流程,国内主要是小型厂使用。用碳丙液作为溶剂来脱除合成氨变换气中co2工艺是一项比较适合我国国情的先进技术,与水洗工艺比较,除具有物理吸收过程显著的节能效果外,在现有的脱碳方法中,由于它能同时脱除二氧化碳、硫化氢及有

32、机硫化物,加上再生无需热能,能耗较低等优势,在国外合成氨和制氢工业上已得到广泛应用。1.2.2.3变压吸附法变压吸附气体分离净化技术,简称psa(pressure swing adsorption)。变压吸附法是近几年才用于合成气净化的,它属于干法,采用固体吸附剂在改变压力的情况下,进行(加压)吸附co2或(减压)解吸。变压吸附法分离气体混合物的基本原理是利用某一种吸附剂能使混合气体中各组份的吸附容量随着压力变化而产生差异的特性,选择吸附和解吸再生两个过程,组成交替切换的循环工艺,吸附和再生在相同温度下进行。可用此法改造小型氨厂,将低能耗,在大型氨厂使用显得困难9。为了达到连续分离的目的,变压

33、吸附脱碳至少需要两个以上的吸附塔交替操作,其中必须有一个吸附塔处于选择吸附阶段,而其它塔则处于解吸再生阶段的不同步骤。在每次循环 中,每个吸附塔依次经历吸附、多次压力均衡降、逆向放压、抽空、多次压力均衡升、最终升压等工艺步骤。目前,此种类型的装置在全国合成氨厂已广泛采用。如四川什邡某氮肥厂为天然气富氧造气,变换气脱碳采用我公司近年来开发的节能型变压吸附脱碳新工艺,多塔进料,多次均压,并实现了吸附塔和真空泵的新组合,同时对吸附剂、程控阀门、控制系统、动力设备的配置都做了较大的改进,从而使h2、n2有效气体回收率大大提高,能耗进一步降低,装置投资也有所减少10。1.2.2.4低温甲醇洗法低温甲醇洗

34、工艺(rectisol process)系由德国林德公司(linde)和鲁奇公司(lurgi)开发,是利用甲醇溶剂对各种气体溶解度的显著差别,可同时或分段脱除h2s、co2和各种有机硫等杂质,具有气体净化度高、选择性好、溶液吸收能力强,操作费用低等特点,是一种技术先进、经济合理的气体净化工艺。自1954年lurgi公司在南非sasol建成世界上第一套工业规模的示范性装置以来,目前有100余套装置投入运行,尤其是大型渣油气化和煤气化装置的气体净化均采用低温甲醇洗工艺。低温甲醇(rectisol)法具有一次性脱除co2,溶液便宜易得,能耗低,适用范围广泛等特点。但该法投资很大,我国镇海炼化厂大化肥

35、等四家以重油和煤为原料的合成氨装置使用了低温甲醇法脱除co2。1.2.3物理化学吸收法物理化学吸收法脱除co2工艺主要有环丁砜(sulfinol)法和常温甲醇(amisol)法,物理化学吸收法常用于中等co2分压的原料气处理。环丁砜法中所使用的溶剂由是环丁矾、二异丙醇胺与水组成,能同时吸收co2和硫的化合物,且吸收速度快,净化度高,但再生耗热多,目前只有一些中小型厂使用。常温甲醇法是在甲醇中加入了二乙醇胺,当co2分压升高时,以其在甲醇中溶解的物理吸收为主;当co2分压较低时,以其与二乙醇胺发生化学反应的化学吸收为主,该法应用范围广,净化率高,但对h2s和co2的选择性较差,己很少使用。1.2

36、.4固体吸附 固体吸附是co2在加压时被吸附在多孔状固体上,减压时吸附的co2被解吸,亦称变压吸附。 第2章 脱碳方法介绍与选择2.1 脱碳方法的比较物理吸收法:早期的合成氨厂中的脱碳多采用加压水洗法。加压水洗脱碳常在填料塔或筛板塔中进行,此法设备简单,但co2的净化度差,且水洗的喷淋密度大,动力消耗高,因此近年来合成氨厂的新建脱碳工艺11已为其他方法所取代。以n-甲基吡咯烷酮为吸收剂的方法称为吡咯烷酮法。吡咯烷酮具有对co2溶解度高、粘度较小、沸点较高、蒸汽压较低等优点。该法特别适应气体压力大于7mpa的场合,但由于n-甲基吡咯烷酮较贵,因此应用受到限制。以聚乙二醇二甲醚为吸收剂的脱碳过程称

37、为selexol法。聚乙二醇二甲醚是一种淡黄色透明的有机液体,无毒、无特殊气味、冰点低、沸点高、化学性质稳定、腐蚀性低,是一理想的物理溶剂。但由于聚乙二醇二甲醚价格昂贵,投资及操作费用均较高,因此该法在国内实际应用较少。低温甲醇法是由德国林德和鲁奇公司联合开发的,吸收剂是甲醇,在12mpa,温度为-750范围内可同时脱除co2和h2s。co2可脱至12e-5,h2s可脱至0.1e-6。该法的特点是不会加湿原料气,并且再生能耗低。此法在国内外均有较广泛的应用。碳酸丙烯酯法是碳酸丙烯酯为吸收剂的脱碳方法。碳酸丙烯酯对co2、h2s的溶解度较大,具有溶解热低、粘度小、蒸汽压低、无毒、化学性质稳定、无

38、腐蚀等优点。该法co2的回收率较高,能耗较低,但投资费用较高。此法在国内也有一定的应用。总的来说,物理吸收法存在许多不足,如水洗法操作费用高,工艺较老。物理吸收法吸收选择性稍差一点,一般适合高含量的二氧化碳。但也不一定,低温甲醇吸收法却可以脱除多种组分,而且净化度很高。化学吸收法:苯菲尔法的吸收剂是在k2co3水溶液中加入二乙醇胺(dea)作为活化剂,v2o5为缓蚀剂。碳酸钾水溶液具有强碱性,其与co2反应生成khco3,生成的碳酸氢钾在减压和受热时,又可放出co2,重新生成碳酸钾,因而可循环使用。为了提高化学反应速度,吸收在较高的温度(90110)下进行,因此吸收与再生的温度基本相近,使流程

39、简化,同时提高了碳酸钾的浓度,增加了吸收能力,降低了再生能耗。苯菲尔法可在高温下运行,再生热低,添加v2o5可防腐蚀,但该工艺需对设备进行钒化处理,要求工人的操作水平较高。活性meda法一乙醇胺(mea)、二乙醇胺(dea)吸收co2后生成稳定的胺基甲酸盐,反应热大,加热再生较困难,蒸汽消耗较高;n-甲基二乙醇胺(mdea)与co2反应生成不稳定的碳酸氢盐,反应热小,加热后较易再生,蒸汽消耗较低。mdea水溶液与co2反应受液膜控制,反应速度较慢。为加快反应速度,德国basf公司开发了改良mdae脱碳工艺过程,其吸收液是由mdea水溶液和少量活化剂组成,一般使用的活化剂有:哌嗪、甲基乙醇胺、咪

40、唑或甲基取代咪唑。co2先与活化剂快速反应,其生成物再与mdea反应,提高了mdea溶液吸收co2的速度。因此,化学吸收法相对来说较好,如催化热钾碱液法能够满足脱碳净化的要求,装置和操作不太复杂,安装成本也比较适合各种规模的生产,以在工业中应用较为广泛。其工艺的先进度主要取决于活化剂的选择。目前此法的工艺日益完善、成熟,设备也较为先进。总的来说,化学吸收法明显的特点是选择性好、收率高。物理-化学吸收法其既有物理法的优点又有化学法的优点,如德国的basf公司开发的活化mdea法采用的n-甲基二乙醇胺脱碳,其既有物理法的优点又有化学法的优点,而加入活化剂,可以调节吸收性能。所以说此方法具有很大的发

41、展潜力。另外,mdea工艺同时具有物理吸收和化学吸收的特点,酸气负荷高,溶解度大,闪蒸放出的co2量多,co2回收率高,溶液循环量相对较小,能耗较低。mdea热稳定性好,不易降解,溶剂挥发性小,溶液对碳钢设备腐蚀性弱。该工艺成熟,操作简便,对工人的素质要求相对较低,近年来在国内得到广泛的应用,是优先选取的化学吸收工艺2.2 脱碳方法的确定热钾碱吸收法是合成氨工业上一种典型的化学吸收脱碳方法,目前国内外都广泛的采用此工艺装置,比较起其他的吸收方法,该工艺能够满足脱碳净化的要求,装置和操作不太复杂,安装成本也比较适合各种规模的生产。由于添加的活化剂不同,热钾碱吸收法有可以分为多种方法,目前合成氨厂

42、主要采用:一是苯菲尔法(又称二乙醇胺改良热钾碱法):以二乙醇胺为活性剂,五氧化二钒为缓蚀剂。二是氨基乙酸催化热钾碱法:以氨基乙酸为活性剂,五氧化二钒为缓蚀剂其中dea改良热钾碱法(又称二乙醇胺法)是世界上广泛应用的胺类处理酸性物质或气体的方法。由于dea不易被co2或cs2降解,其气相损失少,反应速度快,循环率高。由于本方法达到了一定的经济性和脱碳要求,所以本设计采用此方法。下面详细介绍此方法。概述:该方法是利用碳酸钾溶液吸收在高温下吸收二氧化碳,反应式为co2k2co3h2o=2khco3。从经济效益出发,本设计采用110的高温。因为在高温条件下k2co3溶解度增大,可以加大单位时间内的co

43、2吸收量,co2吸收速度较快;此外这个温度与co2再生温度相近,正好可以节约能量,降低生产成本。此外还给溶液中加入活性剂dea和缓蚀剂,因为高温下的co2溶解度降低,反应速度减慢。而减慢反应速度,k2co3对设备和管道的腐蚀作用会加快。因此加入活性剂加快反应速度,增大co2溶解量,加入缓蚀剂则可以减缓其对设备和管道的腐蚀。添加活化剂dea不仅可以提高反应速度(如前述),而且还会改变的co2平衡分压,如表3.1。表3.1 dea含量对溶液吸收能力的影响dea含量(%)0123相对吸收系数0.4131.000.6291.00相对co2分压(mpa)1.941.611.001.00dea含量不同,其

44、溶液的吸收能力不同,如不同含量的dea法的溶液吸收能力如下:普通的dea法:使用20%25%的dea溶液,其对酸性气体的吸收能力为1219立方米co2/立方米溶液。高吸收能力的dea法使用25%27的dea溶液,其对酸性气体的吸收能力为3032立方米co2/立方米溶液。snpa法,使用2530的dea溶液,其对酸性气体的吸收能力3238.4立方米co2/立方米溶液。纯碳酸钾反应机理及催化热钾碱法反应机理纯碳酸钾反应机理:反应式: (2-1)这一反应可以分为下列几步完成: (2-2) (2-3) (2-4) (2-5) (2-6)碳酸钾水溶液吸收co2是一个复杂的过程,可以大致分为以下四个步骤。

45、气相中co2扩散到溶液界面。co2溶解于界面的溶液层中。溶液中的co2在界面液层中与碳酸钾溶液发生化学反应。反应产物向液相主体扩散,而反应从液相主体向液面扩散。上述各步中除第三步式(2-4)是化学过程外,其余均为物质传质过程。整个过程中化学反应速度最慢,是整个吸收过程的控制步骤。含有二乙醇胺(dea)的纯碳酸钾水溶液与co2的反应二乙醇胺(dea)的分子式:(ch2ch2oh)2nh,简写为r2nh。结构式为: h ohch 2ch 2nch2ch 2oh 当碳酸钾溶液中含有少量dea时,与co2反应里程如下: (2-7) (2-8) (2-9) (2-10) (2-11) (2-12)经研究

46、发现,该过程中反应最慢的是式(2-8)这一步,因此这一步就是该过程的控制步骤。k2co3溶液的再生:k2co3溶液吸收co2后转变为khco3溶液ph值降低,活性下降不能再吸收co2,于是要将溶液再生以恢复其活性.再生就是驱逐出co2使溶液恢复吸收能力,以循环使用。再生的反应式为: (2-13)(该反应适于高温低压下进行)从上反应式可以看出:压力越低,温度越高,越有利于碳酸氢钾的分解,故再生反应应在高温低压的条件下进行。热钾碱发脱除技术的进展南化集团研究院1970年起进行热钾碱脱碳工艺的研究,从消化吸收国外技术开始到1980年后开展自主研发,共取得十余项研究成果,下面将介绍近年来的进展情况。新

47、型催化剂的研究南化集团研究院从1982年起进行了空间位阻胺活化剂的研究开发,并筛选出一种稳定的位阻胺amp活化剂,经多家工厂应用取得较好的节能效果。20012002年,该院再次开展研究工作,研制出新型活化剂。由于新型活化剂在热钾碱溶液脱碳过程中同时对吸收速率和再生速率起着促进作用,属于均相催化,故简称“”。2002年,南化集团研究院与中国石化齐鲁分公司第二化肥厂合作,完成了“大型氨厂热钾碱脱碳装置节能技术的侧线试验研究”。结果表明:在齐鲁二化脱碳溶液中添加新型催化剂,比原有的benfiled溶液吸收能力提高16.9%,再生热耗降低22.8%,达到了美国公司和exxon公司flexsord hp

48、的技术水平。我国20世纪90年代引进了3套节能型布朗流程合成氨装置,为了节能,天然气转化水/碳比设计值为2.5,由于在变换催化剂表面上水蒸气少,发生了少量费托反应产生甲醇、甲醛、甲酸各约。其中,甲醛迅速与 脱碳溶液的活化剂二乙醇胺反应生成烷基氨甲醇,烷基氨甲醇在加热或碱性条件下与二乙醇胺缩合生成取代亚甲基胺。这些副产物不仅消耗了活化剂,还使溶液变质,黏度增大、易发泡,而且腐蚀严重,影响脱碳能力。费托合成循环混合气体当中含有大量有机物,气体成分复杂,在活化热碳酸钾脱碳溶液中必须选用相适宜的活化剂。2006 年15月,南化集团研究院针对以煤和天然气为原料,采用不同催化剂、不同合成反应器费托合成尾气

49、的具体条件,进行脱除费托合成循环气中的实验室试验,开发出多种复合活化剂,已申请发明专利(专利申请号200610166303.6)。常用的三种脱碳工艺的比较nhd、mdea以及热钾碱法脱碳是常用的三种脱碳工艺,下面就三种脱碳工艺作一下对比。表 1-1 三种工艺能耗比较项目nhd法热钾碱法mdea法低压蒸汽/t0.31.31.016冷却水/158070电耗×1.3021.11.016综合能耗2.7255.2334.186注:以吨氨计表1-2 三种工艺操作费用比较表项目nhd法热钾碱法mdea法消耗费用/元消耗费用/元消耗费用/元蒸汽/t0.3211.3910.8056电耗/9027601

50、88625.8冷却水/152.380127010.5/0.220.21/0.37.5、损失/100.74.30.380.56操作费用58.5122.394.86 注:以吨氨计表1-3 三种工艺综合技术经济指标比较表项目法热钾碱法法吸收压力/ 2.12.12.1表换气中/%252818281828净化气中/%0.10.10.1再生气中/%98.598.598.5回收率/%679599吨氨能耗×2.7255.2334.186吨氨操作成本/元58.5122.394.86 注:以吨氨计通过表1-1、表1-2、表1-3分别为三种工艺的能耗、操作费用和综合技术经济指标的对比。通过比较可知:三种脱

51、碳工艺以nhd脱碳工艺操作费用最低,热钾碱法最高,但是该比较只是对以煤为原料的合成氨厂而言的。对于以焦炉煤气、天然气等为原料的合成氨厂,由于有前序转化工段和变换工段已使变换气温度较高、蒸汽分压较大,可以代替蒸汽作为热源,此时选用meda脱碳或热钾碱法脱碳工艺就有着独特的优势。meda脱碳工艺操作费用较热钾碱法脱碳工艺低但是mdea法的溶剂费用较高,因此两者的选用应根据具体情况进行取舍。对于以煤头为原料生产合成氨的装置,在蒸汽供应量不足时,选用nhd脱碳工艺,但如果企业计划通过外购购买部分液氨以扩大尿素产量时,应选用meda脱碳工艺。2.3 脱碳工艺流程的分类及比较热钾碱法脱除co2的工艺流程一

52、般有:一段吸收一段再生、二段吸收一段再生、两段吸收两段再生、多段吸收多段再生四种。各种工艺流程比较:一段吸收一段再生流程:该流程的特点是流程简单,所需设备少,成本低廉,但是使用该流程净化度差,净化气中在1.5左右,可以用于净化度要求不高的情况。流程图如图3.1图3.1 一段吸收一段再生流程二段吸收一段再生流程:该过程由于有少部分溶液经冷却后进入吸收塔顶部,净化度可达到co2含量1左右,比起前者净化度上有一定的提高,但仍然不能满足大规模生产的要求,再生热耗较高,仅在一些较低的小规模装置上使用。流程图如图3.2图3.2 二段吸收一段再生流程多段吸收多段再生流程:这种工艺净化度最高,能耗最低,但是其

53、装置系统极其复杂,设备繁多,操作要求也很高,这样就导致该工艺的投资很大,因此从经济合理的角度来考虑,此种工艺还不适合工业生产。两段吸收两段再生流程:目前较为常用的是该流程,这种工艺流程的气体净化一般co2含量不大于,而且其再生热耗也比较合理,流程图如图3.3:图3.3 两段吸收两段再生流程其优点是:在吸收下部用温度较高的再生溶液吸收,既加快了吸收二氧化碳的反应速度,又因为是等温吸收等温再生,节省再生过程的热耗,在吸收塔的上部用温度较低的溶液吸收,降低了溶液表面的二氧化碳平衡分压,提高了气体的净化度。对于能量的综合利用也比较充分;而它的设备装置和操作系统在目前也可以被广泛的接受,所以目前他能流行

54、。2.4 本设计工艺流程的确定通过以上的比较,目前适于选用的是“两段吸收两段再生”流程,所以本设计选用此流程。下面简单介绍一下本设计脱碳工段中的二段吸收二段再生流程。 含co228左右的变换合成气通过与再生塔下部的碱液换热后温度降低到125流到吸收塔底部经气体分布管道进入吸收塔,此时该合成起的压力是1.8mpa。在吸收塔顶部和中部分别用80贫液和104半贫液进行洗涤,出塔净化气温度约80co2含量低于1。富液从吸收塔底引出,经能量回收后进再生塔顶部,在塔内溶液闪蒸出部分水蒸汽和二氧化碳后,与由再沸器加热产生的逆流蒸气接触,同时被加热并放出二氧化碳,又塔中部引出半贫液,温度约110,经半贫液泵送

55、入吸收塔中部,剩下的溶液在再生塔下部继续与逆流的蒸汽接触进行再生,再生后的贫液温度约120,用贫液泵加压经冷却到80左右送入吸收塔顶部。吸收co2的过程中,温度的控制非常关键,它直接影响到co2吸收的平衡和速度。温度升高, k2co3是溶解度加大,这样就提高了吸收速度率;但同时高温下溶液表面co2的平衡分压增大,导致气体净化程度低,不利于对co2的吸收。而“二段吸收一段再生”流程,吸收塔下段的co2分压较高,平衡溶解度较大,采用部分再生的半贫液在较高的温度下进行初步吸收,而吸收塔上部气相中的co2分压较低,平衡溶解度也相对较少,故采用再生贫液来吸收,这样就可以提高净化度。吸收温度的高低主要通过改变半贫液和贫液的流量比来控制,在保证气体净化度的前提下尽可能的降低贫液的流量,这样可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论