




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级几何知识点总结几何,犹若干,多少; 研究空间结构及性质的一门学科。语出诗小雅巧言:“为犹将多,尔居徒几何 ?”下面是的关于八年级几何知识点总结,欢迎大家参考!1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错
2、角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1直角三角形的两个锐角互余19 推论2三角形的一个外角等于和它不相邻的两个内角的和20 推论3三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论 (AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等
3、的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等( 即等边对等角 )31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相 重合33 推论 3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对
4、的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理 3 两
5、个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分, 那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、 b 的平方和、等于斜边/ ' 、 1 c 有关系a2+b2=c247 勾股定理的逆定理如果三角形的三边长a、 b、 a2+b2=c2,那么这个三角形是直角三角形四边形的内角和等于360°360°多边形内角和定理n边形的内角的和等于(n-2) X180任意多边的外角和等于360°1 平行四边形的对角相等2 平行四边形的对边相等夹在两条平行线间的平行线段相等3 平行四边形的对角线互相平分1 两组对角分别相等的四边形是平行2 两组对边分别相等的四边形是平行484950515253545556四边形5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- phpmysql考试试题及答案
- 电线回收知识培训课件
- 电瓶车维修技术知识培训课件
- 高空安全教育课件
- 北科大附中开学考试题及答案
- 北京大学高数期末考试及答案
- 北关医院招聘考试题目及答案
- 天车初级考试题及答案
- 电焊安全和防护知识培训课件
- 考试题及答案小学
- 江苏文化和旅游厅事业单位笔试真题2024
- 实验室生物安全管理手册
- 病理科实验室生物安全评估表
- 2024年高考作文备考之议论文写作素材:人物篇(墨子)
- 成人学习者数字素养的培养
- 管理会计模拟实训实验报告
- (正式版)JBT 11270-2024 立体仓库组合式钢结构货架技术规范
- 数学知识讲座
- 新闻采访课件
- 赣县清溪中心学校早期民办、代课教师稳控应急预案
- 上市公司合规培训
评论
0/150
提交评论