




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习必备欢迎下载点到直线的距离公式教学设计一、教材分析点到直线的距离是直线方程的一个应用,也是坐标法的继续。从知识体系上看,是在研究平面上两点之间距离的基础上来进一步研究点线距离,是对距离度量的完善;从知识结构上看,点到直线的距离是前面讨论两点间距离的深入、后续研究直线和圆的位置关系的准备。继前面学习了两直线平行与垂直后,教材安排讲述了平面上两点间距离,学生已经基本掌握如何判断四边形形状(包括三角形),以及求四边形边长等方法;为求四边形面积,我们还需探讨点到直线的距离(因为要求四边形中顶点到对边的距离,也包括三角形)为此,本课主要研究以下两点:平面上点到直线的距离公式及其应用;两条平行线间的距
2、离。二、教学目标1、知识与技能掌握点到直线的距离公式,能应用公式解决一些简单问题;通过公式的推导向学生渗透数形结合和化归等数学思想;2、过程与方法问题导入的方式;分组合作、研究与交流;通过对数学公式的推导过程,体会数学中常用的数形结合和化归思想;3、情感态度与价值观渗透数形结合和化归等思想,进行对立统一观点的教育,培养学生勇于探索、勇于创新的精神;通过数学活动感受数学与显示世界的联系,进一步认识辨证唯物主义的普遍联系观点。三、教学重难点分析1、教学重点点到直线的距离公式及其应用2、教学难点点到直线距离公式的推导四、教法构想在编写过程中,教材将本课设计为一节活动课,通过上一节课的情景,提出问题,
3、进而给出两种解决问题的方法,最后留下思考。因此,教学中可以首先明确条件,提出问题,然后让学生充分讨论,研究如何解决这个问题;将学生分成小组,采用讨论、交流和学生汇报等形式进行研究性学习。学习必备欢迎下载五、教学过程设计教学教学内容教师活动过程打开多媒体课件, 展示问题,提问:在前面的学习中,我们已经能够问题(引例) :如何从计算斜率的角度判创计算下面四边形的定四边形 ABCD 的形面积?状,你能判断这个四边设yD形形状吗?请你试试。A提问:既然是平行四边形,如何计算它的面积( 1,3)问OCx呢?题(6, 1)教师提问:不妨以 ABB(3, 2)为底,你能计算 AB 的情长吗?怎么计算?境点
4、D( 2,4)到直线提问:高呢?怎样求点AB 的距离 DED 到 AB 的距离呢?打开多媒体课件下一页 ,你能用我们前面所学知识解决这个高DE的计算问题吗?将学生分组,使其合作、讨论、交流学生活动设计意图学生动手演算, 学生很快能得出结果:平行四边形复习旧知口算能力强的学生随即说导入新课出了结果学生回答:底乘高复习旧知学生回答:两点距离公式导入新课AB=( -1-3) 2+ ( 3+2)2激发学生探究、尝试、操作、演算学习的欲望自主探究,发挥学生主观能动性,既加固所学探究、讨论、演算、交流知识的应用,也加强学生分析能力的提高学习必备欢迎下载点 D( 2,4)到直线AB 的距离 DE聆听个别学生
5、的汇报,并及时板书, 适时引导,同时也注意向其他学生作解释,以防部分学生的思学生甲交流想法:先计算DE 的斜率3+25kAB =-1-3 = 4 ,4由 DE AB ,则k DE=5再分别求出直线DE 和AB 的方程两点式求AB :5x+4y 7=0学生思维在所学知识的综合应用中自由遨游,相互交流研究成果,共享问题解yD (2,4)问 A( 1,3)xOx维跟不上, 还得注意教师和学生之间的互动,调动学生的课堂参与性点斜式求 DE :4x 5y+12=0联立方程求交点E 的坐1388标:E(,)决后的喜悦,使学生在有所收获的同时激起继续学习新区和欲望B (3, 2)最后计算DE 的长:题肯定赞
6、许学生的做法并稍作小结, 同时解也指出:这样做计算量偏大。 问:我们能点 D( 2,4)到直线否简化这种计算AB 的距离 DE呢?D (2, 4)决yA( 1,3)EOx提问:前面我们在推B(3,2) 导平面上两点间距离时是采用什么方法得出结果来的?DE=( 13 2)2 (88 4)24141及时总结解决方法,既加深学生对综合应用所学知识的感悟和领感受、体会、思索、 产生进会,也能培养并一步研究学习的欲望提高学生的综合分析能力,帮助其形成一定的数学思想复习旧知,揭示部分学生没有印象 (但试图知 识 间 相 互 联回忆起来),部分学生印象 系,启发学生用不深,正在回忆之中, 而另 同一方法解决
7、不有学生印象比较深刻。 随即 同问题,让学生就有若干学生欣喜的喊出:感觉对数学方法“构造直角三角形”和数学思想的学习显得更为重要学习必备肯定学生的成果, 提D (2,4)问:当时,直角三角yA( 1,3)形是如何构造的?x你还有印象吗?你Ox能构造直角三角形B (3, 2)重新解决这个问题吗?怎么样去构造点 D( 2,4)到直线直角三角形呢?问AB 的距离 DE打开多媒体课件下一页 ,提问:很好,如何求 DE 呢?用什么方法去求呢?欢迎下载学生在教师的引导下已经开始具备自主探究的条学生齐答:过 D 点作分别 x件和能力,心中轴和 y 轴的平行线稍有数学学习的成就感,激发了学生的学习热情和学习欲
8、望学生心有感触,几乎所有学生都有答案,教更为喜悦,学习室开始沸腾,声音颇多:激情进一步增有人喊:“三角形相似”强,自主探究的有人喊:“面积相等”欲望更大,创造题yMDEOxN解点 D( 2,4)到直线AB 的距离 DE肯学生的想法,提问:相似也好, 面积也好,都会跟线段的长度发生关系, 你怎样去求线段的长?进一步肯定学生的做法,问:怎样求点 M 和 N 的坐标呢?能力得到展现学生回答:求出点 M 和 N启发学生的思维,发挥学生的的坐标?创造性学生回答: 先求直线 AB 的方程,再分别令 x=2 、 y=4学生乙板演其做法, 思让学生充分参与路为:先求 MD 、DN 后用到数学教学的活勾股定理求
9、出 MN ,再动中来,使学生提问:你打算怎样去决求呢?请动手试试。请两名学生板演, 其余学生也着手探究。来回走动巡视, 适时作好个别指导小结对比这两种不同的计算方法, 采用构造法计算量小由 MED DMN 可得在具体的数学思MD DE维活动中掌握知MN = ND ,则可求出 DE识,感悟和领会学生丙板演其做法, 思数学思想,培养路为:先求 MD 、DN 后用其分析问题、解勾股定理求出 MN ,再根据决问题的能力DMN 面积相等得到MD ×NDDE=MN让学生亲自感悟聆听感受,明确选择的方法体验,为下面的不同,计算量也不一样研究作准备学习必备欢迎下载一般情况: 设直线 l:Ax+By+
10、C=0 ( A 0且 B 0),直线 l 外任意点 P(x0, y0),学生丁板演,其余学生自主探究,体会、感受公式的推导。学生丁的板书为:由 Ax 1 +By0 +C=0 Ax 0+By 2+C=0yPMQN打开多媒体课件下一页,适当板书要点提问:我们能否借用这种构造法来求直By0+C得 x1=AAx 0 +Cy2=BPM= x 1 x 0让学生在知识的发生发展过程中去体会、领悟知识,通过数学思维活动的参与,公Ox线 l 外任意点 P 到 l 的距离呢?请试试。By0+C= A x0 更能有利于学生对知识的掌握,教给学生探究问则 P 到 l 的距离为式 Ax 0+By 0+Cd=A2+B2此
11、式对A=0 或 B=0也成立推导注意引导学生分析板书:设 PQ l 于Q,设点 M 的坐标为( x 1, y 0),点N的坐标为( x 0, y2)板书学生的探究成果,并提问: 此式是在A和 B都不为零的情况下推出来的,那么对于 A=0 或B=0 是否成立呢?= A x0 +By0+C APN= y 2 y0 Ax 0+C= B y0A x0 +By0+C= B所以 PQ = MP× NP MNMP×NP= PM 2+PN 2 Ax 0+By 0+C = A2+B2学生经过片刻的思考, 很容易得出结果,对于A=0 或B=0 的情况也可以用此式点到直线的距离题的方法比教给学生
12、知识更重要,新课程的观点就是让学生在活动中进行研究性学习,让课堂富有生命力完善思维,引起学生注意数学思维的严密性,培养学生严谨的数学态度,同时也告诉学生:研究问题可以先考虑一般情况,在验证特殊情况。学习必备欢迎下载例 1:求点 P( 1,公2)到下列各直线的式距离运 2x+y 10=0用 3x=2例 2:求两条平行直线 x+3y 4=0 与2x+6y 9=0 之间的距离。公一般地,两平行直线m: Ax+By+C 1=0n:Ax+By+C 2=0式( C1 C2)间距离为 C1C2d=A2+B2运随堂练习:用1.求点到直线的距离 P( 3, 2)l: 3x+4y=25 P( 2,1)l: 3y+
13、5=02.求平行线间距离 5x 12y 2=0 与5x12y+15=0 6x 4y+5=0 与 2y 3x=03.点 M (5,0)到过原点的直线l 的距离为 3,求 l 的方程。打开多媒体课件下一页,讲授、板书、注意师生互动;板书解答过程是给学生作示范。注意强调:一定要先把直线方程化为一般式,在用公式计算打开多媒体课件下一页,引导学生分析, 注意启发学生思维, 与学生互动,师生共同探究,培养学生分析问题、解决问题的能力,适时适当板书打开多媒体课件下一页,适当板书探究问题,让学生自行研究平行线间距离,教师巡回走动,解决个别学生所遇到的问题,同时指出:一定要把直线方程化为 x 项和 y 项系数对
14、应相同,再用公式计算打开多媒体课件下一页,请 3 至 4 名学生板演,其余学生自主练习,教师巡回走视, 注意个别指导聆听、理解、体会知识的应用,在师生相互交流中学会应用知识,学会规范答题。在教师引导下积极参与数学教学,在数学思维活动中进一步感受知识的应用, 思维活动逐步深入, 体会线线距离转化为点线距离的活动过程尝试感受探究过程, 在自主学习中感悟知识, 学生的思维品质得到提高, 对问题的认识在上一个层次。学生答题, 自主练习, 巩固应用知识,加深知识的识记加强知识的巩固运用平行线间距离从思维上比点到直线的距离更深进一层,通过本例的教学,既培养学生转化的数学思想,也为平行线间距离公式的推导作好
15、铺垫学生在平行线间距离的推导过程中体会自主学习的过程,其思维得到训练,提高了学生认识的广泛性和深刻性加强训练、巩固应用、提高能力学习必备欢迎下载例 3:请建立适当的与学生共同探讨, 注意学生讨论、感受和领会建立直角坐标系证明:等启发学生思维、 引导学坐标系的方法, 感悟用代数生分析,对坐标系的建腰三角形底边上任方法研究几何问题的过程,立要抓住 “垂直” 和简意一点到两腰的距领会几何与代数的对立统离之和等于一腰上化计算,可以让学生展一性,体会代数方法处理几的高。开讨论建立方法, 适时何问题的方便对比分析,使学生明确1.点到直线的距离d=课解析法的应用,几何代数化的应用举例,几何问题化为代数问题的
16、转化思想,体会知识之间是相互联系的。 Ax 0+By 0+C堂A 2+B22.平面上两点间距离小 C1C2d=A2+B2结3. 解析法(几何代数化处理)打开多媒体课件下一页,调动学生的主体明确所学基本内回顾总结,明确本节课所学性,师生共同回忆所学容,帮助学生整内容,使学生明确所学的基本内容理知识内容六、板书设计点到直线的距离1.点到直线的距离例 1:例 3:(引例)问题:法一:例 2:法二:2.平行线间距离3.解析法(几何代数化)七、教学过程设计说明本课首先引用具体实例计算点到直线的距离, 采用两种不同方法, 而这两种方法凭学生已有的知识基础,在教师适时、适当的引导下学生能够通过自主探索而接受、掌握。第一种方法是综合利用直线方程、直线与直线垂直、两条直线的交点及平面上两点间距离等知识来解决的。从知识结构体系上讲,是已学知识的综合复习与应用;从能力上讲,是培养学生分析问题、解决问题的能力再现,符合认知发展规律。而第二种方法则是借助前面推导两点间距离公式的方法构造直角三角形,通过面积相等来计算点到直线的距离;从认知结构上看,承前启后,关键在于直角三角形的构造与等面积法的使用。为突破难点,教师逐步引导,对教学内容进行剪裁、重组和铺垫,构建出在探索结论过程中侧重于学生能力培养的一系列教学环节,进而为学生自主推导点到直线的距离公式作好铺垫和准备。接学习必备
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 直播带货佣金及坑位费结算与分成合作协议
- 草原牧场放牧权租赁与草原生态补偿基金合作合同
- 海外留学申请文书专业撰写与审核协议
- 2025年中国铵肥行业市场前景预测及投资价值评估分析报告
- 税务师事务所合伙人退出机制及后续服务协议
- 美甲入住美发店协议书
- 肿瘤疫苗研发项目投资合作协议
- 海外医疗机构档案室租赁及数据备份与恢复合同
- 车辆挂别人名下协议书
- 相关服务酬金在协议书
- 电力工程监理规划
- 浙江省2024年中考语文真题试卷(含答案)
- 化疗药物溢出护理
- 兽药GMP基础知识备考试题及答案
- 甲状腺乳头状癌热消融治疗专家共识2024版
- 04S519小型排水构筑物(含隔油池)图集
- 2024中国糖尿病合并慢性肾脏病临床管理共识解读
- 附件1:肿瘤防治中心评审实施细则2024年修订版
- 第1课《观潮》(阅读理解) 2024-2025学年四年级语文上册(统编版)
- 2025届高三政治最后一节课学科考前指导
- 2024电化学储能电站巡视检查项目表
评论
0/150
提交评论