版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教版高中数学必修精品教学资料3.2三角恒等变换 小结【学习目标】1能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系2能运用两角和与差的正弦、余弦、正切公式以及二倍角公式进行简单的恒等变换。【知识梳理】1 熟练掌握公式:两角和与差的正弦、余弦和正切公式二倍角的正弦、余弦、正切公式2 几个公式变形:=_=_tan±tan=tan(±)(1tantan);3形如asin bcos 的化简:asin bcos sin(),其中cos _,sin _,即tan .【自学探究】一、两角和与差的三角函数公式的应用例1:在abc
2、中,角c120°,tan atan b,则tan atan b的值为()a b c d例2:化简:.思考感悟:要熟练、准确地运用和、差、倍角公式,同时要熟悉公式的逆用及变形。二、角的变换例3、已知sin,则sin 2x_.例4、已知0,cos,sin,求sin()的值思考感悟:1应着眼于“所求角”与“已知角”的和或差的关系,把“所求角”用“已知角”来表示,然后应用诱导公式2常见的配角技巧:(); ; ; ;三、三角函数式的化简、求值例5:化简: (2) 例6:已知,求的值思考感悟:三角函数式的化简要遵循“三看”原则 (1)一看“角”,找到之间的差别与联系,把角进行合理拆分; (2)二
3、看“函数名称”,看函数名称间的差异与联系,常见有“切化弦”;(3)三看“结构特征”,可以帮我们找到变形的方向,常见的有“遇到分式要通分”等四、三角恒等式的证明例7:求证:sin 2.例8:已知0,0,且3sin sin(2),4tan1tan2,证明:.思考感悟:1证明三角恒等式的实质是消除等式两边的差异,有目的的化繁为简、左右归一。2三角恒等式的证明主要有两种类型:绝对恒等式与条件恒等式(1)证明绝对恒等式要根据两边的特征,化繁为简,左右归一,变更论证,化异为同(2)条件恒等式的证明则要比较已知条件与求证等式间的联系,选择适当途径常用代入法、消元法、两头凑等方法【课堂小结】【当堂达标】1化简
4、:sin2sin2cos2cos2cos 2cos 2.2求值:sin 50°(1tan 10°)_.3已知sin msin(2)(m1),求证:tan()tan .【课后作业】1cos2的值为( )a.1b. c. d. 2cos2cos2coscos的值等于( )a. b. c. d.13已知,且sin(),则tan等于( )a.3 b.2 c.2 d.3 4如果tan,那么cos的值是( )a. b. c. d. 5在abc中,若sinbsinccos2,则此三角形为( )a.等边三角形 b.等腰三角形 c.直角三角形 d.等腰直角三角形 6已知sin,23,那么sincos_.7coscos_. 8tan19°tan26°tan19°tan26°_.9已知sin22sin2coscos21,(0,),求sin、tan.10已知sin(x)cos(x),求cos4x的值.【延伸探究】11已知函数(1)求的最小正周期;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026国网福建省电力公司高校毕业生提前批招聘笔试参考题库浓缩500题及一套参考答案详解
- 2026国家管网集团高校毕业生招聘考试参考试题(浓缩500题)含答案详解(培优)
- 2026国网重庆市电力校园招聘(提前批)笔试模拟试题浓缩500题附答案详解(达标题)
- 国家管网集团山东分公司2026届秋季高校毕业生招聘考试备考题库(浓缩500题)及答案详解(网校专用)
- 2026秋季国家管网集团西北公司高校毕业生招聘考试参考试题(浓缩500题)附答案详解ab卷
- 2026秋季国家管网集团云南公司高校毕业生招聘考试备考题库(浓缩500题)附答案详解(完整版)
- 2026秋季国家管网集团东部原油储运公司高校毕业生招聘考试参考题库(浓缩500题)带答案详解(考试直接用)
- 2025国网广西电力校园招聘(提前批)笔试模拟试题浓缩500题附答案详解(综合题)
- 2026国家管网集团甘肃公司秋季高校毕业生招聘25人考试参考题库(浓缩500题)及答案详解(基础+提升)
- 2026秋季国家管网集团华中公司高校毕业生招聘笔试备考题库(浓缩500题)附参考答案详解(模拟题)
- 银行防诈骗应急处理预案
- 小学老师法律风险培训
- 2025年度消防员心理健康教育培训
- GB/T 19411-2024除湿机
- 六年级上整本书阅读《爱的教育》推进课教学设计
- 颈椎病的临床表现及分型
- 2024北京初三一模语文汇编:议论文阅读
- 绵阳市高中2022级(2025届)高三第一次诊断性考试(一诊)物理试卷(含标准答案)
- 看守所送东西的委托书
- 江苏省南通市如皋市2024-2025学年九年级上学期10月期中物理o化学试题
- 人教版(2024新版)七年级上册英语期中模拟检测试卷(含答案)
评论
0/150
提交评论