



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教版高中数学必修精品教学资料第8课时二、平面向量数量积的运算律教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题. 教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用授课类型:新授课教 具:多媒体、实物投影仪内容分析: 启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质. 教学过程:一、复习引入:1两个非零向量夹角的概念已知非零向量与,作,则()叫与
2、的夹角.2平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量|a|b|cosq叫与的数量积,记作a×b,即有a×b = |a|b|cosq,().并规定0与任何向量的数量积为0. 3“投影”的概念:作图c 定义:|b|cosq叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当q为锐角时投影为正值;当q为钝角时投影为负值;当q为直角时投影为0;当q = 0°时投影为 |b|;当q = 180°时投影为 -|b|.4向量的数量积的几何意义:数量积a×b等于a的长度与b在a方向上投影|b|cosq的乘积.5两个向量的数量积
3、的性质:设a、b为两个非零向量,e是与b同向的单位向量.1° e×a = a×e =|a|cosq; 2° ab Û a×b = 03° 当a与b同向时,a×b = |a|b|;当a与b反向时,a×b = -|a|b|. 特别的a×a = |a|2或4°cosq = ;5°|a×b| |a|b|二、讲解新课:平面向量数量积的运算律1交换律:a × b = b × a证:设a,b夹角为q,则a × b = |a|b|cosq,b
4、5; a = |b|a|cosq a × b = b × a2数乘结合律:(a)×b =(a×b) = a×(b)证:若> 0,(a)×b =|a|b|cosq, (a×b) =|a|b|cosq,a×(b) =|a|b|cosq,若< 0,(a)×b =|a|b|cos(p-q) = -|a|b|(-cosq) =|a|b|cosq,(a×b) =|a|b|cosq,a×(b) =|a|b|cos(p-q) = -|a|b|(-cosq) =|a|b|cosq.3分配律:
5、(a + b)×c = a×c + b×c 在平面内取一点o,作= a, = b,= c, a + b (即)在c方向上的投影等于a、b在c方向上的投影和,即 |a + b| cosq = |a| cosq1 + |b| cosq2 | c | |a + b| cosq =|c| |a| cosq1 + |c| |b| cosq2, c×(a + b) = c×a + c×b 即:(a + b)×c = a×c + b×c说明:(1)一般地,(·)(·)(2)··,
6、0(3)有如下常用性质:,()()····()·三、讲解范例:例1 已知a、b都是非零向量,且a + 3b与7a - 5b垂直,a - 4b与7a - 2b垂直,求a与b的夹角.解:由(a + 3b)(7a - 5b) = 0 Þ 7a2 + 16a×b -15b2 = 0 (a - 4b)(7a - 2b) = 0 Þ 7a2 - 30a×b + 8b2 = 0 两式相减:2a×b = b2代入或得:a2 = b2设a、b的夹角为q,则cosq = q = 60°例2 求证:平行四边
7、形两条对角线平方和等于四条边的平方和.解:如图:平行四边形abcd中,=|2=而= ,|2=|2 + |2 = 2= 例3 四边形abcd中,且····,试问四边形abcd是什么图形?分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量.解:四边形abcd是矩形,这是因为:一方面:0,(),()()即··由于··,同理有由可得,且即四边形abcd两组对边分别相等.四边形abcd是平行四边形另一方面,由··,有(),而由平行四边形abcd可得,代入上式得·(2),
8、即·,也即abbc.综上所述,四边形abcd是矩形.评述:(1)在四边形中,是顺次首尾相接向量,则其和向量是零向量,即0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系.四、课堂练习:1.下列叙述不正确的是( )a.向量的数量积满足交换律 b.向量的数量积满足分配律c.向量的数量积满足结合律 d.a·b是一个实数2.已知|a|=6,|b|=4,a与b的夹角为°,则(a+2b)·(a-3b)等于( )a.72 b.-72 c.36 d.-363.|a|=3,|b|=4,向量a+b与a-b的位置关系为( )a.平行 b.垂直 c.夹角为 d.不平行也不垂直4.已知|a|=3,|b|=4,且a与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天门职业学院《现代临床医学概论》2023-2024学年第二学期期末试卷
- 山东省滨州市博兴县2025年初三全真英语试题模拟试卷(5)含答案
- 四川外语院重庆第二外国语校2024-2025学年初三下学期第一次模拟(网考)考试语文试题含解析
- 山东杏林科技职业学院《大学基础读写4》2023-2024学年第一学期期末试卷
- 泰州职业技术学院《英语综合技能1》2023-2024学年第二学期期末试卷
- 南昌师范学院《内科学》2023-2024学年第一学期期末试卷
- 2025年网络营销与跨境电商考试题及答案
- 四川省资阳市乐至县2024-2025学年初三5月综合练习(二模)化学试题试卷含解析
- 陕西省西北工业大咸阳启迪中学2025届初三下学期普通毕业班第二次模拟考试语文试题含解析
- 交通运输工程2025年相关知识考试题目及答案
- 企业会计人员劳动合同模板2025
- 浙江省肿瘤医院医疗废物暂存间环保设施提升改造项目报告表
- 敬老院安全培训课件
- 《加拉帕戈斯群岛》课件
- (高清版)DB2201∕T 43-2023 肉犊牛饲养技术规范
- 社区老旧小区外墙翻新脚手架方案
- 2025年医院消化内科年度工作计划
- 2024届河南省郑州市高三一模语文试题(解析版)
- 初中二年级 岭南版 美术 第三单元《瞬间的表情》课件
- 大国精神知到智慧树章节测试课后答案2024年秋中北大学
- 财政评审项目造价咨询技术服务方案审计服务方案
评论
0/150
提交评论