




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、起课题: 1.3.2三角函数的图象与性质(二)班级: 姓名: 学号: 第 学习小组【学习目标】1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间【课前预习】1、定义域:函数及的定义域2、值域:(1)函数,及,的值域(2)函数在 时,取最大值 ,当 ,时,取最小值 ;函数在 ,时,取最大值 ,当 ,时,取最小值 。3、周期性正弦函数,和余弦函数,是周期函数,最小正周期是 。4、奇偶性正弦函数,是 函数,余弦函数,是 函数。理解:(1)由诱导公式 , 可知以上结论成立;(2)反映在图象上,正弦曲
2、线关于 对称,余弦曲线关于 对称。5、单调性(1)由正弦曲线可以知道:正弦函数在每一个闭区间 上,都从-1增大到1,是增函数;在每一个闭区间 上,都从1减小到-1,是减函数。(2)由余弦曲线可以知道:余弦函数在每一个区间 上,都从-1增大到1,是增函数;在每一个闭区间 上,都从1减小到-1,是减函数。【课堂研讨】例1、求下列函数的最大值及取得最大值时自变量的集合:(1); (2)例2、求函数的单调增区间。【学后反思】课题: 1.3.2三角函数的图象与性质(二)班级: 姓名: 学号: 第 学习小组【课堂检测】1. 不求值,分别比较下列各组中两个三角函数值得大小(1)与; (2)与(3)与; (4
3、)与2. 求下列函数的单调区间(1) (2)【课后巩固】1.求下列函数的最小值及取得最小值时自变量的集合(1) (2)2.求函数的值域3. 求下列函数的单调区间:(1); (2)4. 不求值,分别比较下列各组中两个三角函数值得大小(1) (2)课题: 1.3.2三角函数的图象与性质(二)班级: 姓名: 学号: 第 学习小组【学习目标】1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间【课前预习】1、定义域:函数及的定义域2、值域:(1)函数,及,的值域(2)函数在 时,取最大值 ,当 ,时,
4、取最小值 ;函数在 ,时,取最大值 ,当 ,时,取最小值 。3、周期性正弦函数,和余弦函数,是周期函数,最小正周期是 。4、奇偶性正弦函数,是 函数,余弦函数,是 函数。理解:(1)由诱导公式 , 可知以上结论成立;(2)反映在图象上,正弦曲线关于 对称,余弦曲线关于 对称。5、单调性(1)由正弦曲线可以知道:正弦函数在每一个闭区间 上,都从-1增大到1,是增函数;在每一个闭区间 上,都从1减小到-1,是减函数。(2)由余弦曲线可以知道:余弦函数在每一个区间 上,都从-1增大到1,是增函数;在每一个闭区间 上,都从1减小到-1,是减函数。【课堂研讨】例1、求下列函数的最大值及取得最大值时自变量的集合:(1); (2)例2、求函数的单调增区间。【学后反思】课题: 1.3.2三角函数的图象与性质(二)班级: 姓名: 学号: 第 学习小组【课堂检测】5. 不求值,分别比较下列各组中两个三角函数值得大小(1)与; (2)与(3)与; (4)与6. 求下列函数的单调区间(1) (2)【课后巩固】1.求下列函数的最小值及取得最小值时自变量的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厨房清洗合同协议书
- 财务管理中大数据的应用分析试题及答案
- 研究中国现代化进程中的历史机遇试题及答案
- 2025年工程法规考试的复习要点试题及答案
- 工程法规考试解析为什么选择模拟试卷的理由试题及答案
- 2025年互联网广告精准投放算法在游戏直播行业的应用报告
- 2025至2030年中国玉石制品行业投资前景及策略咨询报告
- 2025年楼宇工程法规的考察范围试题及答案
- 2025年工程法规考试最优复习方法及试题及答案
- 重要的执业药师考试试题及答案
- -辽宁省沈阳市大东区2023-2024学年七年级下学期期末数学试卷
- 小古文100篇074-《鹿照水》
- 危房改建申请报告
- 项目信息化管理系统需求说明
- 人民民主是全过程民主
- 电竞赛事管理系统的设计与实现
- 地下管线和相邻建筑物安全保护措施
- DB15-T 557-2024 主要树种人工灌木林平茬复壮技术规程
- 网络舆情的管理课件
- 营业线(邻近营业线)施工作业安全管理
- 安全生产培训的夜间施工安全
评论
0/150
提交评论