第四章相似三角形导学稿_第1页
第四章相似三角形导学稿_第2页
第四章相似三角形导学稿_第3页
第四章相似三角形导学稿_第4页
第四章相似三角形导学稿_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、导学稿:4.6测量旗杆的高度=j编写:区伟娟 审核:石燕玲 主编:石燕玲学习目标:1.通过测量旗杆的高度的活动,巩固相似三角形的有关知识;2.综合运用相似三角形的有关知识解决问题.学习过程:一、知识引入1.判断两个三角形相似需要哪些条件?2.如果两个三角形相似,它们的对应角有什么关系?对应边呢?二、知识探索知识探索一利用阳光下的影子测量旗杆的高度选一名同学直立于旗杆影子的顶端b点处,测量该同学的身高ab、影长be和同一时刻旗杆的影长bd.根据测量的数据,你能求出旗杆的高度吗?说明你的理由.(分析:由于太阳光线是平行的,所以人、人的影长为直角边组成的直角三角形与物体、 物体的影子为直角边组成的直

2、角三角形相似,即同一时刻物高与影长成比例.)ae bd知识探索二利用标杆测量旗杆的高度选一名学生为观测者,在他和旗杆之间的地面上直立一根高度已知的标杆ef,观测者前后调整自己的位置,当旗杆顶端、标杆顶端部与眼睛恰好在同一直线上时,其他同 学立即测出观测者的眼睛到地面的高度ab、他的脚与旗杆底端的距离bd,以及观测者的 脚到标杆底端部的距离bf,根据测量的数据,你能求出旗杆的高度吗?说明你的理由.解:过点a作an1cd,交ef于点m,交cd于点n知识探索三利用镜子的反射测量旗杆的高度选一名学生作为观测者.在他与旗杆之间的地面e处平放一面镜子,固定镜子的位置,观测者看着镜子来回调整自己的位置,使自

3、己能够通过镜子看到旗杆项端.测量所 需的数据,根据所测的结果你能求出旗杆的高度吗?说明你的理由.(提示:利用光线的入射角等于反射角构造出相似三角形)思考:1.今天所用的三种测量方法各有哪些优缺点?2 .你还有哪些测量旗杆高度的方法?三、知识训练:1.垂直于地面的竹竿的影长为12米,其顶端到其影子顶端的距离为13米,如果此时测得某小树的影长为6米,则树高为米.2.小明为了测量一棵树的高度,找来一根竹竿cd,移动cd的位置,使自己的眼睛.竿顶与树顶恰好在一条直线上,已知小明的眼睛高度为150cm,竹竿cd的高度为3m,ec二2m, bc=6m,求松树的高度.树品标千3.雨后初晴,一学生在运动场上玩

4、耍,在他面前2ni远处一块积水中,他看到旗杆顶端的倒影,如果旗杆底端到积水处的距离为40m,该生眼睛的高度为1.5m,那么旗杆的高度是多少米?知识的整理1. 今天我们学习了哪几种测量旗杆高度的方法?2. 所用的几种测量方法各有哪些优缺点?拓展题导学稿:4. 7.1相似多边形的性质(一)编写:区伟娟 审核:石燕玲 主编:石燕玲学习目标:1.掌握相似三角形对应高,对应角平分线和对应中线的比与相似比的关系; 学习过程一. 知识引入1. 全等三角形有哪些性质?相似三角形呢?二. 知识探索知识探索一相似三角形对应高的比钳工小王准备按照比例尺为3:4的图纸制作三角形零件,如图,图纸上的abc表示该零件的横

5、断面aa'b'c', cd和cd'分别是它们的高.(1) aabc与aabc'相似吗?如果相似,请说明理由,并指出它们的相似比;cdcd(2)请说明 bcds abcdl (3)上兰等于多少?发现:相似三角形对应高的比等于知识探索二 相似三角形对应角平分线的比已知 abcaaafbrc aabc与a'b'c'的相似比为上 如果cz)和c' df分cd别是它们的对应角平分线,那么垸等于多少?cdr发现:两个相似三角形对应角平分线的比等于知识探索三相似三角形对应中线的比己知 abcaaafbfc aabc与易方'。&#

6、39;的相似比为上如果cd. c dr分别cd是它们的对应中线,则垸等于多少?c'd'发现:规律整理表述:相似三角形对应高的比.对应角平分线的比和对应中线的比都等于.三. 知识训练1. 如果两个相似三角形对应高的比为4 : 5,那么这两个相似三角形的相似比是对应中线的比为: ,对应角平分线的比为2. 如图 abcsaab,c=对应中线 ad = 6cm, a77=10cm,若 bc=4.2cm,则brc =3. 如图所示,在等腰三角形abc中,底边bc=60cm,高ad=40cm,四边形pqrs 是正方形.(1) aasr与aabc相似吗?为什么?(2) 求正方形pqrs的边长

7、.四. 知识的整理(2分钟)相似三角形对应的比.对应的比和对应的比都等于拓展题:矩形defg内接于 abc,点d在ab上,点g在ac上,e. f在bc上,ah±bc 于 h,且交 dg 于 n, bc=18cm, ah=6cm, de: dg=2: 3,求矩形 defg 的周长.b e h f c导学稿:4.7.2相似多边形的性质(二)编写:区伟娟 审核:石燕玲 主编:石燕玲学习目标:1.理解并掌握相似多边形的周长比,面积比与相似比的关系;2. 掌握相似多边形的周长比,面积比在实际中的应用.学习过程:一、知识引入(共3分钟)1. 若g = f = f =则 i + = (根据性质).

8、b d f 3 b + d + f2. 如果 abcs def,且ab=3cm,它的对应边de=5cm,那么 abc与 def的对应高的比是,对应中线的比是,对应角平分线的比是.二、知识探索知识探索一相似三角形周长比、面积比与相似比的关系3如图,、侧 cs'nxc ,相似比为一,cda.ab, cdf ± afbr.4(1) 请写出图中所有成比例的线段.(2) abc与a'b'c'的周长比是多少?你是怎么做的?(3) a abc的面积如何表示?的面积呢? /xabc与的面积比是多规律整理表述:相似三角形的周长比等于,面积之比等于(5)如果把四边形换成五

9、边形,那么结论又如何呢?知识探索二相似多边形周长比、面积比与相似比的关系如图四边形s四边形a2b2c2d2 ,相似比为k(1) 四边形a,b1 cd与四边形a2b2c2d2的周长比是多少?(2) 连接相应的对角线aig,a2c2,所得的 aibici与a232c2相似吗?如果相似,它们的相似比是多少?为什么?sq(3) .各是多少?5地"2m2c2d2(4) 四边形a&gdi与四边形a2b2c2d2的面积比是多少?规律整理表述:相似多边形的周长比等于三、知识应用,面积比等于1.在一张1: 10000的地图上,一块多边形地区的面积为6cm2,则这块多边形地区的实际面积为2.如果

10、两个相似多边形的面积的比为4: 9,那么这两个相似多边形周长比是3.如图,在zxabc 中,己矢口 debc, ad=3bd, sbc = 48 ,求sde.4. 如图,rt/sabc rtnefg, ef=2ab, bd, fh 是它们的中线,zbdc 与fhg 是否相似?如果相似,试确定其周长比和面积比.四、知识整理(2分钟)相似多边形性质:如果a,g,c,相似比为比,那么对应高的比是,对应中线的比是,对应角平分线的比是,周长比是,面积之比是.拓展题:1. 如图,将zxabc沿bc方向平移得到aa'b'c',已知bc= 4cm ,将aabc与brc重叠的部分(图中阴

11、影部分)的面积是abc面积的一半,求aabc平移的距离.ab b' c c92. 如图,在zxabc中,d是bc的中点,且ad=ac, de_lbc,交ab于e, ec交ad 于 f,(1)说明 abcafcd(2)若 safcd =5, bc=10,求 saabc导学稿:图形的放大与缩小(1)编写:区伟娟 审核:石燕玲 主编:石燕玲学习目标:1. 了解位似图形及其有关概念,知道位似图形的性质;2. 会利用作位似图形等方法将一个图形放大或缩小.学习过程:一、知识引入思考:什么叫做相似图形?二、知识探索知识探索一位似图形的概念下面的一组图片是形状相同的图形,在图片上取巴黎铁塔的塔顶a,它

12、与另一图片(如图片)上的相应点b之间的连线是否经过镜头中心p?在图片上换其它的点试一试,还有类似的结论吗?规律整理表述:1. 如果两个图形不仅是,而且每组对应点所在的直线都经过,那么这样的两个图形叫做位似图形,这个点叫做,这时的相似比又称2. 位似图形满足两个条件:(1) ;(2)思考:相似图形与位似图形有什么联系与区别?知识探索二位似图形的性质1 .指出下图中的图形是否是位似图形?(3)(4)(1)若是,指出位似中心;(2)在图(1)中任取一对对应点,度量这两个点到位似中心的距离,它们的比与位似比有关系吗?在图(3)中再试一试,还有类似的规律吗?规律整理表述:三、知识训练:1.下列图中的两个

13、图形不是位似图形的是(cd2.下列说法正确的个数是(1)位似图形一定是相似图形;(2)相似图形一定是位似图形;(3)每一对对应顶点的连线都经过位似中心;(4)若五边形abcde与五边形aibcidiei位似,则其中zabc与也是位似图 形,且位似比相等.a. 1个b. 2个c. 3个d. 4个3. 如图,四边形木框abcd在灯泡发出的光照射下形成的影子是四边形a,b,c,d,若ab: afb'=1: 2,则四边形abcd的面积:四边形a'bc'd,的面积为()a. 4: 1b. v2:lc. 1: v2d. 1: 44. 位似图形上某一对对应点到位似中心的距离分别为5c

14、m和10cm,则它们的位似比为.5. 如图,aocd与aoab是位似图形,ab与cd平行吗?尝试说明理由.6.如图,aabc与a'3'c'关于点。位似,b0二6, 8。二12(1)若ac=5,求a'c'的长;(2)若aabc的面积为7,求aafbfc的面积.7.按如下方法可以将山况的三边缩小为原来的-mc相应三边的捉实际上,仙c与是位似图形)(1)任意画一个三角形,用上面方法亲自试一试.如图任取一点。,连接a0.bo. co,并取它们的中点.de. f.adef的三边就是(2)如果在射线ao.bo. co上分别取点。.e. f,使。0=2。4, eo=2

15、ob, fo=2oc,那么结果又 会怎样?四、知识整理:1.位似图形的定义是什么?2.什么叫位似比?3.位似图形与相似图形有什么关系?导学稿:图形的放大与缩小(2)编写:区伟娟审核:石燕玲 主编:石燕玲学习目标:1. 巩固位似图形的有关知识;2. 能熟练地利用图形的位似将一个图形放大或缩小.学习过程:一、知识引入1. 位似图形的定义:2. 位似图形的性质: 两位似图形一定是图形,但图形不一定位似. 每对对应顶点的连线都经过. 每对对应顶点到位似中心的距离比都等于.二、知识探索知识探索一作位似图形的步骤作出一个新的图形,使新的图形与原图形对应线段的比为2: 1.参考方法:第一步:在原图外任取一点

16、0作为位似中心;第二步:在原图上找出关键点a、b、c,作射线ao、bo、co;第三步:按照2: 1的比例依次在射线上取点d、e、f,使do=20a, 0e二20b, of=2oc; 第四步:顺次连接d、e、f,则就是所求.思考:对于上面的例题,你还有其他办法吗?依次在射线oa、ob、0c上取点d、e、f呢?知识探索二在直角坐标系中放大或缩小图形如图,zsabc的三个顶点坐标分别为a (-2, 4)、b (-3, 1)、c (-1, 1),以坐标原点o为位似中心,相似比为2,在第二象限内将aabc放大,放大后得到 a'b'c.(1)画出放大后的并写出点a,、b。的坐标.(点a、b

17、、c的对应点为a'、b c)(2)求左a,bg的面积.三、知识训练:1.已知aabc在第一象限,则它关于原点位似的aafbrc在(a.第三象限b.第二象限c.第一象限d.第一或第三象限2.如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2: 5,且三角尺的一边长为8cm,则投影三角形的对应边长为(a. 8cmb. 20cmc. 3.2cmd 10cm3.如图,zxabcszxdef,则zkabc 与zkdef 是以为位似中心的位似图形,若abd' e'ab: afbf =,五边形abcde与五边形abcde的面积比为等日,则&bc与wef的相似比是第

18、4题94.五边形abcde与五边形abcde是位似图形,且oar = -oa,则3,周长比为5.aabc和aa'b'c'关于原点位似,且点a(-3, 4),它的对应点a(6, -8),则zxabc与aafbrc的相似比是6. 如图,aabc与aabc'是位似图形,且位似比 是 1 : 2,若 ab=2cm,则 a!br -cm,请在图中画出位似中心0.b'7. 三角形三顶点的坐标分别是a (0, 0), b (2, 3), c (3, 1),试将zkabc放大,使放 大后的adef与aabc对应边的比为2: 1,并求出放大后的三角形各顶点坐标.四、知识整

19、理: 利用作位似图形的方法将一个图形放大或缩小的步骤是:并延长;1、连接2、按照确定对应点的位置;3、连接拓展题:如图所示,图中的小方格都是边长为1的正方形,aabc与左a'b'c是以点。为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点o;(2)直接写出a,bc的位似比;(3)以位似中心o为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出学习目标:1.2.学习过程:导学稿:编写:区伟娟梳理归纳所学知识,相似图形回顾与思考审核:石燕玲 主编:石燕玲会利用所学知识解决问题;提高自己归纳.概括的能力,分析.解决问题的能力.一、知识回顾二、知识要点知识

20、要点一成比例线段1.在比例尺为1 : 1000的地图上,一个周长为4cm,面积为lek的地方,所表示的实际周长为2.如果线段c是a、b的比例中项,且a二4, b=9,则c二3.4.5.若x:y:z = l:3:5,另8 么 *3- =x-3y + z. a c e c a 2ba-c + 2e已知一 = 一 = = 2,则=;=.b d fbb-d + 2f如果点p是线段ab的黄金分割点,且ap>pb,则下列说法正确的是(填序号).ap2=pbab;ab2=ap pb;bp2=ap ab;ap: ab=pb: ap知识要点二相似三角形的判定6. 如图,ab=3ac, bd=3ae,又 bd/ac,点 b, a, e 在同一条直线上.求证:abdscae;7. 如图,d是zxabc的边ab上一点,连接cd,若ad=2, bd=4, zacdzb,求ac的长.c知识

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论