实验设计与数据处理第三四五章例题及课后习题答案_第1页
实验设计与数据处理第三四五章例题及课后习题答案_第2页
实验设计与数据处理第三四五章例题及课后习题答案_第3页
实验设计与数据处理第三四五章例题及课后习题答案_第4页
实验设计与数据处理第三四五章例题及课后习题答案_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、例4-5试验号x1x2x3yy211131.50.330.108921.41930.3360.11289631.82510.2940.08643642.2102.50.4760.22657652.6160.50.2090.043681632220.4510.20340173.4283.50.4820.232324总和15.4133142.5781.014214平均2.2192 0.368286l114.48方程目标函数l2225211e-061e-06l33721e-06l1216.83 2.32e-09l2310.54 7.24e-11l311.4l1y0.2404于是 三元线性回归方程为:

2、y=0.197+0.0455x1-0.00377x2+0.0715x3l2y0.564l3y0.5245检验线性回归方程的显著性方差分析表(1)f检验sst0.064773429差异源ssr0.046300406回归sse0.018473023残差总和例4-6试验号反应温度x1/反应时间x2/h反应物含量x3/% 得率yy21701017.657.7627010310.3106.093703018.979.2147030311.2125.445901018.470.5669010311.1123.217903019.896.0489030312.6158.76sum6401601679.981

3、7.07ave802029.9875summary output回归统计multiple r0.99645389r square0.992920354adjusted r square0.987610619标准误差0.183711731观测值8方差分析dfssmsfsignificance f回归分析318.933756.311251879.37555e-05残差40.1350.03375总计719.06875coefficients标准误差t statp-valuelower 95%intercept2.18750.5549493223.941801374 0.0169340.6467136

4、71x variable 10.048750.0064951917.505553499 0.0016860.03071646x variable 20.063750.0064951919.814954576 0.0006040.04571646x variable 31.31250.06495190520.20725942 3.54e-051.132164601所以得到的线性回归方程表达式为:y=2.1875+0.04875x1+0.06375x2+1.3125x3l11800l22800l338p10.315761009p20.412918242p30.850125793t17.505553

5、499t29.814954576t320.20725942例4-7p/atm2.011.781.751.731.68m/(mol/min)0.7630.7150.710.6950.698p/atmm/(mol/min)xyxi2yi2lg(pi)lg(mi)12.010.7630.303196057-0.117475462 0.0919280.01380048421.780.7150.250420002-0.1456939580.062710.02122672931.750.710.243038049-0.148741651 0.0590670.02212407941.730.6950.238

6、046103-0.158015195 0.0566660.02496880251.680.6980.225309282-0.156144577 0.0507640.02438112961.620.6730.209515015-0.171984936 0.0438970.02957881871.40.630.146128036-0.200659451 0.0213530.04026421581.360.6120.133538908-0.213248578 0.0178330.04547495690.930.498-0.031517051-0.302770657 0.0009930.0916700

7、71100.530.371-0.27572413-0.43062609 0.0760240.18543883sum14.796.3651.44195027-2.045360556 0.4812350.498928113ave1.4790.63650.144195027-0.204536056summary output回归统计multiple r0.999492866r square0.998985989adjusted r square0.998859237标准误差0.00319584观测值10方差分析f0.01(1,8)=11.3dfssmsfsignificance f回归分析10.08

8、04964260.080496426 7881.4592.89205e-13残差88.17071e-051.02134e-05总计90.080578133coefficients标准误差t statp-valuelower 95%intercept-0.2827903410.001341014-210.877979 2.86e-16-0.285882725x variable 1 0.5426975320.00611300288.77758147 2.89e-130.528600925例4-8xi13456yi2781011ixiyix1x2yy211211242373974934841686

9、4451052510100561163611121671274912144781086410100899981981910810100864sum53775338177727ave5.8888898.5555555565.88888888942.33333333 8.55555612108642002468101214xyseries1summary output回归统计multiple r0.981636002r square0.96360924adjusted r square0.951478987标准误差0.643254553观测值9方差分析f0.01(2,6)=10.92dfssmsf

10、significance f回归分析265.739563732.86978185 79.438514.81918e-05残差62.4826585180.41377642总计868.22222222coefficients标准误差t statp-valuelower 95%intercept-1.7159663870.846062418-2.028179422 0.088888-3.786206541x variable 1 3.7500763940.33001917411.36320764 2.78e-052.942548569x variable 2 -0.2790297940.028576

11、121-9.764439272 6.63e-05-0.348953042例4-9ix1x2x3yx1=x311131.50.331.521.41930.336331.82510.294142.2102.50.4762.552.6160.50.2090.5632220.451273.4283.50.4823.5sum15.4133142.57814summary output回归统计multiple r0.98381256912108642002468101214xyseries1r square0.967887171adjusted r square0.935774341标准误差0.02633

12、1591观测值7方差分析f0.05(3,3)=9.28dfssmsfsignificance f回归分析30.0626933710.0208977930.14020.00967471残差30.0020800580.000693353总计60.064773429coefficients标准误差t statp-valuelower 95%intercept0.0578864970.0423528241.36676828 0.265114-0.076899093x variable 1 0.2521725380.0474675695.312522719 0.0130250.101109549x va

13、riable 2 -0.0648408350.012883654-5.032798503 0.015119-0.105842372x variable 3 0.0283170250.0058242054.861955457 0.0166170.009781806习题3.1颜色销售额/万元橘黄色26.528.725.129.127.2粉色31.228.330.827.929.6绿色27.925.128.524.226.5无色30.829.632.431.732.8方差分析:单因素方差分析summary组观测数求和平均方差行 15136.627.322.672行 25147.829.562.143

14、行 35132.226.443.298行 45157.331.461.658方差分析差异源ssdfmsfp-value组间76.8455325.6151666710.48620.00046614组内39.084162.44275总计115.929519习题3.2乙炔流量空气流量/(l/min)/(l/min)89101112181.181.580.380771.581.481.879.479.175.927576.175.475.470.82.560.467.968.769.868.7方差分析:无重复双因素分析summary观测数求和平均方差行 15399.979.983.137行 25397

15、.679.525.507行 35372.774.544.528行 45335.567.114.485列 14297.974.47596.7425列 24307.376.82542.2625列 34303.875.95 27.89667列 44304.376.07521.4625列 54292.473.115.9方差分析差异源ssdfmsfp-value行537.63753179.2125 28.614869.44035e-06列35.47348.86825 1.4159940.287422317误差75.155126.262916667总计648.265519习题3.3铝材材质 去离子水自来水

16、12.35.611.85.321.55.321.54.831.87.432.37.4方差分析:可重复双因素分析summary去离子水自来水总计1观测数224求和4.110.915平均2.055.453.75方差0.1250.0453.912观测数224求和310.113.1平均1.55.053.275方差00.1254.24253观测数224求和4.114.818.9平均2.057.44.725方差0.12509.5825总计观测数66求和11.235.8平均1.8666666675.966666667方差0.1306666671.298666667方差分析差异源ssdfmsfp-value样

17、本4.37166666722.185833333 31.226190.000673423列50.43150.43 720.42861.76634e-07交互2.35521.1775 16.821430.00346704内部0.4260.07总计57.5766666711习题4.1c/%(x)t/(y)19.6105.420.510622.3107.225.1108.926.3109.627.8110.729.1111.5浓度与沸点温度之间的关系32272217102104106108110112c/%t/series1ixyxi2yi2xiyi119.6105.4384.1611109.162

18、065.84220.5106420.25112362173322.3107.2497.2911491.842390.56425.1108.9630.0111859.212733.39526.3109.6691.6912012.162882.48627.8110.7772.8412254.493077.46729.1111.5846.8112432.253244.65总和170.7759.34243.0582395.11 18567.38平均24.38571108.4714286summary output回归统计multiple r0.999752712r square0.999505486a

19、djusted r square0.999406583标准误差0.056916528观测值7方差分析dfssmsfsignificance f回归分析132.7380882632.73808826 10105.941.84673e-09残差50.0161974560.003239491总计632.75428571coefficients标准误差t statp-valuelower 95%intercept92.911379380.156270601594.554439 2.55e-1392.50967302x variable 1 0.6380805170.006347274100.52828

20、12 1.85e-090.621764331浓度与沸点温度之间的关系32272217102104106108110112c/%t/series1习题4.2t/kc/%lntlnc273202.4361626471.301029996summary output283252.4517864361.397940009293312.466867621.491361694回归统计313342.4955443381.531478917multiple r333462.5224442341.662757832r square353582.5477747051.763427994adjusted r squ

21、are标准误差观测值方差分析回归分析残差总计interceptx variable 1summary output回归统计multiple r0.987714594r square0.97558012adjusted r square0.969475149标准误差0.029578225观测值6方差分析dfssmsfsignificance f回归分析10.1398052908010.00022547残差40.0034994850.000874871总计50.143304776coefficients标准误差t statp-valuelower 95%某物质的溶解度与绝

22、对温度之间的关系100010010100t/kc/series1intercept-8.1418961590.764779948-10.64606385 0.000441-10.2652657x variable 1 3.887206360.30750196612.64124068 0.0002253.0334440320.0002910853.88720636习题4.3试验号煎煮时间/min(x1) 煎煮次数(x2)加水量/倍(x3)含量/(mg/l)y1301815240211373503746460110265702634680395779031257summary output回归统计

23、multiple r0.992299718r square0.984658731adjusted r square0.969317462标准误差2.742554455观测值7方差分析dfssmsfsignificance f回归分析31448.292328482.7641093 64.183660.003210937残差322.564814817.521604938总计61470.857143coefficients标准误差t statp-valuelower 95%intercept-12.611111115.352918185-2.355931975 0.099767-29.6464858

24、1x variable 10.1750.0669114772.615395849 0.079315-0.037942184x variable 2 13.712962961.5612678048.783222793 0.0031098.744312009x variable 3 1.2870370370.5371472552.396059972 0.096215-0.42240526习题4.4试验号t/na2o(x1)/%sio2(x2)/%cao(x3)/%x1=x11102914729.1142101114728.1143101614727.114410061473.38.81459931

25、473.36.814610041473.38.11479671473.37.11489991473.36.11499921474.37.8141098014747.1141198014746.1141298414747.1141396515716.11514100615719.1151598815727.1151698415729.1151796715728.1151898715727.1151997915728.1152098815726.1152196815738.1152294015737.1152395615736.1152495615738.1152592515736.115summ

26、ary output回归统计multiple r0.866175908r square0.750260704adjusted r square0.714583661标准误差12.79120464观测值25方差分析dfssmsfsignificance f回归分析310322.086763440.695588 21.029231.56843e-06残差213435.913237163.6149161总计2413758coefficients标准误差t statp-valuelower 95%intercept1557.05891196.9955571816.05288898 2.89e-1313

27、55.345608x variable 1 38.6453237415.36278362.515515725 0.0200936.696666383x variable 2 -1.1212663080.249355095-4.496664918 0.000198-1.639828614x variable 3 6.4842365252.6881350022.4121692260.025090.89395378所以得到的线性回归方程表达式为:y=1557.06+38.65x1-1.12x1x2+6.48x3根据偏回归系数的大小,可知三个因素的主次顺序为:x1x3x2。习题5.1优选过程:1、首先

28、在试验范围0.618处做第一个实验,这一点的温度为:x1=340+(420-340)0.618=389.44.2、在这点的对称点,即0.382处做一个实验,这一点的温度为:x1=420-(420-340)0.618=370.56.3、比较两次的实验结果,发现第一点比第二点的合成率高,故舍去370.56以下部分,在370.56-420之间,找x1的对称:x3=420-(420-370.56)0.618=389.44608.4、比较两次的实验结果,发现第一点比第三点的合成率高,故舍去389.44608以下部分,在389.44608-420之间,找x1的对称:x4=420-(420-389.4460

29、8)0.618=401.11767744.5、比较两次的实验结果,发现第一点比第四点的合成率高,故舍去401.11767744以上部分,在389.44608-401.11767744之间,找x1的对称:x5=401.11767744-(401.11767744-389.44608)0.618=393.787.习题5.3电解质温度657480电解率94.398.981.5目标函数101.4993 x=70.62664887则下一个实验点为70.63。习题5.4.黄金分割法首先在实验范围的0.618处做第一个实验,这一点的碱液用量为908070605040302010002040608010012

30、0y = -0.2274x2 + 32.1207x - 1032.7519电解质温度电解率)()()()()()(212131323212221321232232214xxyxxyxxyxxyxxyxxyx-+-+-+-+-=x1=20+(80-20)*0.618=57.08(ml)在这一点的对称点,即0.382处做第二个实验,这一点的碱液用量为x2=80-(80-20)*0.618=42.92(ml)比较两次试验结果,第二点较第一点好,则去掉57.08以上的部分,然后在20ml与57.08ml之间,找x2的对称点x3=57.08-(57.08-20)*0.618=34.165(ml)比较第二

31、点与第三点,第二点较好,则去掉34.165以下的部分,然后在34.165ml与57.08ml之间,找x2的对称点x4=34.165+(57.08-34.165)*0.618=48.326(ml)比较第二点与第四点,第四点较好,则去掉42.29以下的部分,然后在42.29ml与57.08ml之间,找x4的对称点x5=42.29+(57.08-42.29)*0.618=51.43(ml)由于x5属于50ml到55ml之间,则为最佳点。习题5.5对开法在直角坐标系中画出一矩形代表优选范围:20 x100,30y160.在中线x=(20+100)/2=60上用单因素法找到最大值,设最大值在p点。再在中

32、线y=(30+160)/2=90上用单因素法找到最大值,设最大值在q点。比较p和q的结果,如果q大,去掉x60部分,否则去掉另一半。再用同样的方法来处理余下的半个矩形不断地去其一半,逐步得到所需要的结果。习题5.2解:由于实验范围在3到8桶之间,中间正好有5格,则第一次实验点在3/5处,即6桶处,第二次实验点在3/5的对称点2/5处,即5桶处。比较两个实验点的结果,第一点处较好,则去掉5桶以下的部分,实验范围在5到8桶之间,中间正好有3格,第三次试验点选在2/3处, 即7桶处。比较第一点与第三点的结果,第一点较好。则最佳点是第一点,即6桶。x12x22x32x1x2x2x3x1x3x1yx2y

33、x3y11692.251319.51.50.334.290.4951.96361926.6574.20.47046.3841.0083.24625145251.80.52927.350.2944.841006.2522255.51.04724.761.196.762560.2541.681.30.54343.3440.104594844664461.3539.9220.90211.5678412.2595.29811.91.638813.4961.68738.36277935309.4276.532.25.91249.5465.6805方程解a=0.196943b1=0.045463b2=-0

34、.00377b3=0.071493ssdfmsff0.05(3,3)显著性0.0463 m=30.0154332.506389.80.018473 n-m-1=30.0061580.064773 n-1=6x12x22x32x1x2x1x3x2x3x1yx2yx3y490010017007010532767.6490010097002103072110330.949009001210070306232678.94900900921002109078433633.6810010019009010756848.4810010099002703099911133.381009001270090308

35、822949.881009009270027090113437837.85200040004012800128032064311649170.3于是 三元线性回归方程为:y=0.197+0.0455x1-0.00377x2+0.0715x3方差分析表upper 95% 下限 95.0% 上限 95.0%3.728286 0.646714 3.7282860.066784 0.030716 0.0667840.081784 0.045716 0.0817841.492835 1.132165 1.4928351.621.41.360.930.530.6730.630.6120.4980.371x

36、iyi-0.03562-0.03648-0.03615-0.03761-0.03518-0.03603-0.02932-0.028480.0095420.118734-0.1466upper 95% 下限 95.0% 上限 95.0%-0.2797 -0.28588-0.27970.556794 0.528601 0.55679478910121098x12x22x1x2x1yx2y11122981272163162566432128256251255025036129621666396492401343845886440965128064081656172981729100100001000

37、808003812531730174963596upper 95% 下限 95.0% 上限 95.0%0.354274 -3.78621 0.3542744.557604 2.942549 4.557604-0.20911 -0.34895 -0.20911x2=x32x3=x1x3y2x12x22x32x1x2x1x3x2x32.251.50.10892.255.06252.253.3752.253.37594.2 0.11289698117.642712.637.811.8 0.086436113.2411.81.86.255.5 0.2265766.2539.062530.2515.62

38、513.7534.3750.251.3 0.0436810.250.06251.690.1250.650.32546 0.203401416368122412.2511.9 0.23232412.25150.0625141.6142.87541.65145.7753532.2 1.01421435292.25232.689884.7247.45upper 95% 下限 95.0% 上限 95.0%0.192672-0.0769 0.1926720.4032360.10111 0.403236-0.02384 -0.10584 -0.023840.046852 0.009782 0.046852

39、f crit3.238872f crit3.4902953.259167f crit5.1432535.9873785.143253upper 95% 下限 95.0% 上限 95.0%93.31309 92.50967 93.313090.654397 0.621764 0.6543970.9877150.975580.9694750.0295786dfssmsfsignificance f1 0.139805 0.139805159.8010.000225474 0.003499 0.0008755 0.143305coefficients 标准误差t statp-valuelower 9

40、5% upper 95% 下限 95.0% 上限 95.0%-8.14190.76478 -10.6461 0.000441 -10.2652657 -6.01853 -10.2653 -6.018533.887206 0.307502 12.64124 0.000225 3.033444032 4.740969 3.033444 4.740969upper 95% 下限 95.0% 上限 95.0%回归统计-6.01853 -10.2653 -6.018534.740969 3.033444 4.740969upper 95% 下限 95.0% 上限 95.0%4.424264 -29.6465 4.4242640.387942 -0.03794 0.38794218.68161 8.744312 18.681612.996479 -0.42241 2.996479x2=x1x2x3=x3y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论