Stata运行结果及分析_第1页
Stata运行结果及分析_第2页
Stata运行结果及分析_第3页
Stata运行结果及分析_第4页
Stata运行结果及分析_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、log: 赵耐青统计分析结果.loglog type: textopened on: 20 Jul 2002, 10:47:03./*调用数据库*/.use " 赵而寸青 clinical trial data(Chenfeng).dta ”, clear./*描述数据库*/.describe赵而寸青 clinical trial data(Chenfeng).dtaobs:240vars:607 Feb 2002 21:41size:35,760 (87.5% of memory free)storage display valuevariable name type format

2、 label variable labelNoint %8.0g编号Centerbyte %8.0g中心编号Namestr3 %9s姓名Genderbyte %8.0gsex性别Agebyte %8.0g年龄(岁)Hightint %8.0g身高(cm)Weightfloat %9.0g体重(kg)Baselbyte%8.0g糖尿病病程(年)Base2byte%8.0g神经病病变病程(年)mdns0byte%8.0g疗前MDNSmdnslbyte%8.0g疗后1月MDNSmdns2byte%8.0g疗后2月MDNSmdns3byte%8.0g疗后3月MDNSmdns4byte%8.0g疗后4月

3、MDNSmdns5byte%8.0g疗后5月MDNSmdns6byte%8.0g疗后6月MDNSfell0byte%8.0g疗前感觉障碍得分felllbyte%8.0g疗后1月感觉障碍得分fell2byte%8.0g疗后2月感觉障碍得分fell3byte%8.0g疗后3月感觉障碍得分fell4byte%8.0g疗后4月感觉障碍得分fell5byte%8.0g疗后5月感觉障碍得分fell6byte%8.0g疗后6月感觉障碍得分gca0float%9.0g疗前正中感觉N传导速度gcalfloat%9.0g疗后正中感觉N传导速度gcb0float%9.0g疗前尺感觉N传导速gcblfloat%9.0

4、g疗后尺感觉N传导速gcc0float%9.0g疗前腓感觉N传导速度gcclfloat%9.0g疗后腓感觉N传导速度yca0float%9.0g疗前正中运动N传导速度ycalfloat%9.0g疗后正中运动N传导速度ycb0float %9.0g疗前腓总运动N传导速度ycblfloat %9.0g疗后腓总运动N传导速度HbA1c0float %9.0g疗前糖化血红蛋白HbA1c1float %9.0g疗后糖化血红蛋白RBC0float %9.0g疗前红细胞数RBC1float %9.0g疗后红细胞数WBC0float %9.0g疗前白细胞数WBC1float %9.0g疗后白细胞数CRE0fl

5、oat %9.0g疗前肌酊CRE1float %9.0g疗后肌酊ALT0float %9.0g疗前谷丙转氨酶ALT1float %9.0g疗后谷丙转氨酶TG0float %9.0g疗前甘油三脂TG1float %9.0g疗后甘油三脂CHO0float %9.0g疗前总胆固醇CHO1float %9.0g疗后总胆固醇ECG0byte %8.0gECG疗前心电图ECG1byte %8.0gECG疗后心电图side1byte %8.0g不良反应之一degree1byte %8.0gdegree 程度relate1byte %8.0grelate 与药物的关系side2byte %8.0g不良反应之二

6、degree2byte %8.0gdegree 程度relate2byte %8.0grelate 与药物的关系side3byte %8.0g不良反应之三degree3byte%8.0gdegree程度relate3byte%8.0grelate与药物的关系Groupfloat%9.0ggroup分组变量dfloat %9.0gSorted by:./*各中心各组病例分配*/.tab Center Group|分组变量中心编号 | Treatment Placebo | Total+1 |2424 |482 |2424 |483 |2424 |484 |2424 |485 |2424 |48+

7、Total |120120 |240结果显示,各中心均按方案完成了规定的入组病例数。./*产生一变量表示脱落*/.gen loss=.(240 missing values generated)./*计算脱落时间*/.for num 1/ 6 : replace loss=X if mdnsX=. & loss=.-> replace loss=1 if mdns1=. & loss=.(0 real changes made)-> replace loss=2 if mdns2=. & loss=.(0 real changes made)-> re

8、place loss=3 if mdns3=. & loss=.(0 real changes made)-> replace loss=4 if mdns4=. & loss=.(3 real changes made)-> replace loss=5 if mdns5=. & loss=.(0 real changes made)-> replace loss=6 if mdns6=. & loss=.(0 real changes made)./*按中心排序 */. sort Center./*各中心各组脱落情况*/. by Cente

9、r : table Group loss-> Center = 1no observations-> Center = 2no observations-> Center = 3| loss分组变量| 4+Treatment |1-> Center = 4| loss分组变量| 4+Placebo | 2-> Center = 5no observations./*脱落情况列表*/.list No Center Name mdns0 Group loss if loss=.NoCenterNamemdns0 Grouploss139.139LFZ17Treatme

10、nt179.179TCY12Placebo192.192XXX18Placebo结果显示,共有3例脱落,其中,3中心在第4次随访时NGF组有1例脱落;第4中心在第4次随访时安慰剂组有2例脱落。./*两组性别比较 */. tab Group Gender, chi| 性别分组变量 | female male | Total+Treatment |6357 |120Placebo |6456 |120-L4-Total |127113 |240Pearson chi2(1) = 0.0167 Pr = 0.897./*两组年龄比较*/ .ttest Age, by(Group)Two-sample

11、 t test with equal variancesGroup | Obs Mean Std. Err. Std. Dev. 95% Conf. Interval +Treatmen |12060.06667.75840148.30787158.5649661.56838Placebo |12058.03333.80882168.86019656.4317959.63488+combined |24059.05.55711768.63082957.9525160.14749+diff |2.0333331.108767-.15091784.217585Degrees of freedom:

12、 238Ho: mean(Treatmen) - mean(Placebo) = diff = 0Ha: diff < 0t = 1.8339P < t = 0.9660Ha: diff = 0t = 1.8339P > |t| = 0.0679Ha: diff > 0t = 1.8339P > t = 0.0340./*扣除性别影响后两组的身高比较*/ . anova High Group GenderNumber of obs =240 R-squared0.4022Root MSE = 6.07288 Adj R-squared = 0.3971Source

13、 |-LPartial SSdfMSFProb > FModel |I5880.4695422940.2347779.720.0000|Group |3.5252739913.525273990.100.7575Gender |15874.1320415874.13204159.280.0000|Residual |8740.5262923736.8798578+Total | 14620.9958 239 61.1757148./*扣除性别影响后两组的体重比较*/. anova Weight Group GenderNumber of obs =240R-squared = 0.192

14、2Root MSE = 9.11056Adj R-squared = 0.1854Source | Partial SS df MS F Prob > F +Model | 4681.226192 2340.6130928.200.0000|Group | 188.5753431 188.5753432.270.1331Gender | 4476.984691 4476.9846953.940.0000|Residual | 19671.5512 237 83.0023256+Total | 24352.7774 239 101.894466./*各组基线情况比较 */.for var

15、Base1 Base2 mdns0 fell0 gca0 : ttest X , by(Group)-> ttest Base1 , by(Group)Two-sample t test with equal variancesGroup | Obs Mean Std. Err. Std. Dev. 95% Conf. Interval+Treatmen |1203.55.21198342.3221623.1302523.969748Placebo |120 3.258333.22469892.4614542.8134073.70326+combined |2403.404167.154

16、4209 2.3922783.099967 3.708366+diff |.2916667 .3089119-.3168841.9002175Degrees of freedom: 238Ho: mean(Treatmen) - mean(Placebo) = diff = 0Ha: diff < 0t = 0.9442P < t = 0.8270Ha: diff = 0t = 0.9442P > |t| = 0.3460Ha: diff > 0t = 0.9442P > t = 0.1730-> ttest Base2 , by(Group)Two-sam

17、ple t test with equal variancesGroup | Obs Mean Std. Err. Std. Dev. 95% Conf. Interval +Treatmen |1201.208333.16732191.832919 .87701931.539647Placebo |1201.066667.14673541.607406.77611591.357217+combined |2401.1375.11113581.721708.91856931.356431+diff |.1416667 .2225486-.29675.5800834Degrees of free

18、dom: 238Ho: mean(Treatmen) - mean(Placebo) = diff = 0Ha: diff < 0Ha: diff = 0Ha: diff > 0t = 0.6366t = 0.6366t = 0.6366P < t = 0.7375P > |t| = 0.5250P > t = 0.2625-> ttest mdns0 , by(Group)Two-sample t test with equal variancesGroup | Obs Mean Std. Err. Std. Dev. 95% Conf. Interval

19、+Treatmen |12014.21667.43227354.73531913.3607215.07261Placebo |12014.79167.45418934.97539513.8923315.69101+combined |24014.50417.31340344.85522413.8867815.12155+diff |-.575.6270154-1.810209.6602088Degrees of freedom: 238Ho: mean(Treatmen) - mean(Placebo) = diff = 0Ha: diff < 0t = -0.9170P < t

20、= 0.1800Ha: diff = 0t = -0.9170P > |t| = 0.3600Ha: diff > 0t = -0.9170P > t = 0.8200-> ttest fell0 , by(Group)Two-sample t test with equal variancesGroup | Obs Mean Std. Err. Std. Dev. 95% Conf. Interval+Treatmen |12010.375.51789585.6732649.34951511.40049Placebo |120 9.458333.47528495.20

21、64868.51722210.39944+combined |2409.916667.35198025.4528549.22328710.61005+diff |.9166667 .7029309-.46809412.301427Degrees of freedom: 238Ho: mean(Treatmen) - mean(Placebo) = diff = 0Ha: diff < 0t = 1.3041P < t = 0.9033Ha: diff = 0t = 1.3041P > |t| = 0.1935Ha: diff > 0t = 1.3041P > t

22、= 0.0967-> ttest gca0 , by(Group)Two-sample t test with equal variancesGroup | Obs Mean Std. Err. Std. Dev. 95% Conf. Interval +Treatmen |11449.625441.0553811.2683747.5345451.71634Placebo |115 47.367831.11262111.9315345.16373 49.57192+combined |22948.4917.768914711.6357946.9766250.00679+diff |2.2

23、576131.533926-.76494235.280168Degrees of freedom: 227Ho: mean(Treatmen) - mean(Placebo) = diff = 0Ha: diff < 0Ha: diff = 0Ha: diff > 0t = 1.4718t = 1.4718t = 1.4718P < t = 0.9288P > |t| = 0.1425P > t = 0.0712从上述分析可知,两组的基本情况和基线情况是一致的。即两组具有可比性。./*计算各时点MDNS的减分率*/.for var mdns1-mdns6 : ge

24、n pX = (mdns0-X)/mdns0-> gen pmdns1 = (mdns0-mdns1)/mdns0-> gen pmdns2 = (mdns0-mdns2)/mdns0-> gen pmdns3 = (mdns0-mdns3)/mdns0-> gen pmdns4 = (mdns0-mdns4)/mdns0(3 missing values generated)-> gen pmdns5 = (mdns0-mdns5)/mdns0(3 missing values generated)-> gen pmdns6 = (mdns0-mdns6)

25、/mdns0(3 missing values generated)./* 按 Group 排序 */ . sort Group./*各组各时间点的减分率描述*/.by Group : summ pmdns*-> Group = TreatmentVariable | Obs Mean Std. Dev. Min Max+pmdns1 |120.0977496.1776434-.375.6pmdns2 |120.1943255.2145272-.375 .8571429pmdns3 |120.2586773.2252976-.4285714.7333333pmdns4 |119.3505

26、427.2422572-.33333331pmdns5 |119.4200117.2478205-.33333331pmdns6 |119.4998484.2489689-.33333331-> Group = PlaceboVariable | Obs Mean Std. Dev. Min Maxpmdns1 |120.036402.1624928-.5714286.4615385pmdns2 |120.0810332.221016-.5714286.7142857pmdns3 |120.1347084.2422806-.57142861pmdns4 |118.1680638.2485

27、104-.57142861pmdns5 |118.1877292.2597217-.51pmdns6 |118.2154119.2516401-.51./*保存现有数据库*/赵耐青 clinical trial data(ChenFeng)1.dta"赵而寸青 clinical trial data(ChenFeng)1.dta saved./*疗前的减分率为0 */.gen pmdns0=0./*产生各时间点的均数以便画图*/.collapse pmdns0 pmdns1-pmdns6 , by(Group).drop Group./*将横向排列的数据库转为列向排列*/.xpose

28、, clear./*产生时间变量 */.gen week=2*(_n-1)./*绘制MDNS平均增加值随时间变化的曲线*/.gra v1 v2 week , c(ll-) xlab(0,2,4,6,8,10,12) ylab saving(" 赵耐青 图 1", replace)./*调用原数据库*/赵耐青 clinical trial data(ChenFeng)1.dta", clear./*各组各时间点MDNS的减分率比较*/.for var pmdns1-pmdns6 : ttest X, by(Group)-> ttest pmdns1, by(G

29、roup)Two-sample t test with equal variancesGroup | Obs Mean Std. Err. Std. Dev. 95% Conf. Interval+Treatmen |120.0977496.0162165.1776434.0656392.12986Placebo |120.036402.0148335.1624928.0070302.0657738+combined |240.0670758.0111438.1726386.0451232.0890284+diff |.0613475 .0219775.0180523.1046427Degre

30、es of freedom: 238Ho: mean(Treatmen) - mean(Placebo) = diff = 0Ha: diff < 0Ha: diff = 0Ha: diff > 0t = 2.7914t = 2.7914t = 2.7914P < t = 0.9972 P > |t| = 0.0057 P > t = 0.0028-> ttest pmdns2, by(Group)Two-sample t test with equal variancesGroup | Obs Mean Std. Err. Std. Dev. 95% Co

31、nf. IntervalTreatmen |120.1943255.0195836.2145272.1555481.233103Placebo |120.0810332.0201759.221016.0410829.1209835combined |240.1376794.0144998.2246302.1091156 .1662431diff |.1132924.0281173.0579018.168683Degrees of freedom: 238Ho: mean(Treatmen) - mean(Placebo) = diff = 0Ha: diff < 0Ha: diff =

32、0Ha: diff > 0t = 4.0293t = 4.0293t = 4.0293P < t = 1.0000 P > |t| = 0.0001P > t = 0.0000-> ttest pmdns3, by(Group)Two-sample t test with equal variancesGroup | Obs Mean Std. Err. Std. Dev. 95% Conf. Interval +Treatmen |120.2586773.0205668.2252976.217953.2994015Placebo |120.1347084.022

33、1171.2422806.0909144.1785025+combined |240.1966929.0155936.2415752.1659744.2274113+diff |.1239689 .0302019.0644716.1834661Degrees of freedom: 238Ha: diff < 0t = 4.1047P < t = 1.0000Ha: diff = 0t = 4.1047P > |t| = 0.0001Ha: diff > 0t = 4.1047P > t = 0.0000Ho: mean(Treatmen) - mean(Plac

34、ebo) = diff = 0-> ttest pmdns4, by(Group)Two-sample t test with equal variancesGroup | Obs+Treatmen |119.3505427.0222077.2422572.3065655.39452Placebo |118.1680638.0228772.2485104.1227567.213371+combined |237.2596883.0169786.261383.2262392.2931373diff |.1824789 .0318799.1196719.2452859Mean Std. Er

35、r. Std. Dev. 95% Conf. IntervalDegrees of freedom: 235Ho: mean(Treatmen) - mean(Placebo) = diff = 0Ha: diff < 0Ha: diff = 0Ha: diff > 0t = 5.7239t = 5.7239t = 5.7239P < t = 1.0000P > |t| = 0.0000P > t = 0.0000-> ttest pmdns5, by(Group)Two-sample t test with equal variancesGroup | O

36、bs Mean Std. Err. Std. Dev. 95% Conf. Interval +Treatmen |119.4200117.0227177.2478205 .3750246.4649989Placebo |118.1877292.0239093.2597217.140378.2350803+combined |237.3043605.018106.2787384.2686905.3400305+diff |.2322826 .0329745.1673193.2972459Degrees of freedom: 235Ho: mean(Treatmen) - mean(Place

37、bo) = diff = 0Ha: diff < 0t = 7.0443P < t = 1.0000Ha: diff = 0t = 7.0443P > |t| = 0.0000Ha: diff > 0t = 7.0443P > t = 0.0000-> ttest pmdns6, by(Group)Two-sample t test with equal variancesGroup | Obs Mean Std. Err. Std. Dev. 95% Conf. Interval +Treatmen |119.4998484.0228229.2489689

38、.4546528.545044Placebo |118.2154119.0231653.2516401.1695342.2612897+combined |237.3582302.0186798.2875711.3214299.3950306+diff |.2844365 .0325181.2203724.3485007Degrees of freedom: 235Ho: mean(Treatmen) - mean(Placebo) = diff = 0Ha: diff < 0Ha: diff = 0Ha: diff > 0t = 8.7470t = 8.7470t = 8.747

39、0P < t = 1.0000P > |t| = 0.0000P > t = 0.0000./*产生疗效等级变量 */.for num 1/ 6 : gen lxX=recode(pmdnsX,0.1599,0.4999,0.7499,1)-> gen lx1=recode(pmdns1,0.1599,0.4999,0.7499,1)-> gen lx2=recode(pmdns2,0.1599,0.4999,0.7499,1)-> gen lx3=recode(pmdns3,0.1599,0.4999,0.7499,1)-> gen lx4=reco

40、de(pmdns4,0.1599,0.4999,0.7499,1)(3 missing values generated)-> gen lx5=recode(pmdns5,0.1599,0.4999,0.7499,1)(3 missing values generated)-> gen lx6=recode(pmdns6,0.1599,0.4999,0.7499,1)(3 missing values generated)./* 1表示<0.16 2表示 0.16 表示0.500 4表示0.751 */.for num 1/6 : recode lxX 0.1599=1 0.

41、4999=2 0.7499=3 1=4-> recode lx1 0.1599=1 0.4999=2 0.7499=3 1=4(240 changes made)-> recode lx2 0.1599=1 0.4999=2 0.7499=3 1=4(240 changes made)-> recode lx3 0.1599=1 0.4999=2 0.7499=3 1=4(240 changes made)-> recode lx4 0.1599=1 0.4999=2 0.7499=3 1=4(237 changes made)-> recode lx5 0.15

42、99=1 0.4999=2 0.7499=3 1=4(237 changes made)-> recode lx6 0.1599=1 0.4999=2 0.7499=3 1=4(237 changes made)./*变量名定义 */.for num 1/6 : label var lxX "第 X 次随访疗效等级”-> label var lx1 '”第1次随访疗效等级"'-> label var lx2 '"第2次随访疗效等级"'-> label var lx3 '"第3次随访

43、疗效等级"'-> label var lx4 '"第4次随访疗效等级"'-> label var lx5 '"第5次随访疗效等级"'-> label var lx6 '"第6次随访疗效等级"'./*定义疗效等级变量的数值标签*/.lab define lxlab 1 "无效"2 "好转”3 "显效”4 ”近愈”. for num 1/6 : label value lxX lxlab-> label val

44、ue lx1 lxlab-> label value lx2 lxlab-> label value lx3 Ixlab-> label value lx4 lxlab-> label value lx5 lxlab-> label value lx6 lxlab./* 6次随访各组的疗效*/.for num 1/6 : tab Group lxX-> tab Group lx1| 第1次随访疗效等级分组变量| 无效 好转 显效| Total+Treatment |78402 |120Placebo |99210 |120+Total |177612 |24

45、0-> tab Group lx2Total| 第2次随访疗效等级 分组变量| 无效 好转 显效 近愈| +Treatment |5750121 |120Placebo |823440 |120+Total |13984161 |240-> tab Group lx3| 第3次随访疗效等级分组变量| 无效 好转 显效 近愈| Total+Treatment |4063170 |120Placebo |724233 |120+Total |112105203 |240-> tab Group lx4| 第4次随访疗效等级分组变量| 无效 好转 显效 近愈| Total+-+Tr

46、eatment |2459333 |119Placebo |+615052 |+118Total |85109385 |237-> tab Group lx5| 第5次随访疗效等级分组变量|无效好转显效近愈|Total+Treatment |1949447 |119Placebo |6044122 |118+Total |+2377993569 |-> tab Group lx6|第6次随访疗效等级分组变量| 无效好转显效J.J.近愈|Treatment |Placebo | +145329486313 |143 |+119118TotalTotal |67777716 |237.

47、/*降为4.0版本*/.version 4.0./*对两组疗效等级进行 Wilcoxon检验*/. wilcoxon lx1 , by(Group)Test: Group=2 has longer survival timeWilcoxon-Gehan statistic =-2562z =-3.12Pr>|z| =0.0018.wilcoxon lx2 , by(Group)Test: Group=2 has longer survival time Wilcoxon-Gehan statistic =-3246z =-3.46Pr>|z| =0.0005.wilcoxon lx

48、3 , by(Group)Test: Group=2 has longer survival time Wilcoxon-Gehan statistic =-4125z =-4.25Pr>|z| =0.0000.wilcoxon lx4 , by(Group)Test: Group=1 has longer survival time Wilcoxon-Gehan statistic =5763z =5.91Pr>|z| =0.0000. wilcoxon lx5 , by(Group)Test: Group=2 has longer survival time Wilcoxon-

49、Gehan statistic =-6452z =-6.48Pr>|z| =0.0000.wilcoxon lx6 , by(Group)Test: Group=1 has longer survival time Wilcoxon-Gehan statistic =7803z =7.76Pr>|z| =0.0000从上面的分析可见,MDNS的疗效等级,从第1次随访开始,两组即具有统计学差异。NGF组优于安慰剂对照组。./*回到7.0版本*/.version 7.0./*定义疗效变量 */. .for num 1/6 : recode lxX 1 2 =13 4 =2-> r

50、ecode lx1 1 2 =1 3 4 =2 (63 changes made)-> recode lx2 1 2 =1 3 4 =2(101 changes made) -> recode lx3 1 2 =1 3 4 =2 (128 changes made) -> recode lx4 1 2 =1 3 4 =2 (152 changes made)-> recode lx5 1 2 =1 3 4 =2(158 changes made)-> recode lx6 1 2 =1 3 4 =2(170 changes made).for num 1/6 :

51、label var lxX ”第 X 次随访疗效”-> label var lx1 '"第1次随访疗效"'-> label var lx2 '”第2次随访疗效”-> label var lx3 '"第3次随访疗效”-> label var lx4 '"第4次随访疗效"'-> label var lx5 '"第5次随访疗效"'-> label var lx6 '"第6次随访疗效"'./*定义疗

52、效变量数据标签*/.lab define lxlab0 1 "无效”2 ”有效.for num 1/6 : label value lxX lxlab0-> label value lx1 lxlab0-> label value lx2 lxlab0-> label value lx3 lxlab0-> label value lx4 lxlab0-> label value lx5 lxlab0-> label value lx6 lxlab0./*各组有效率比较*/.for num 1/6 : tab Group IxX , exact row -> tab Group lx1 , exact row| 第1次随访疗效分组变量| 无效 有效| Total+Treatment |1182 |120|98.331.67 |100.00+Placebo |1200 |120|100.000.00 |100.00+Total |2382 |240|99.170.83 |100.00Fisher'

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论