A characterization of Dirac morphisms_第1页
A characterization of Dirac morphisms_第2页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、a characterization of dirac morphisms relating the dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields. 8 2 ay m 5 g d. h t a

2、m 1 v 1 9 5 . 5 8 :0v i x r aacharacterizationofdiracmorphismse.loubeauandr.slobodeanuabstract.relatingthediracoperatorsonthetotalspaceandonthebasemanifoldofahorizontallyconformalsubmersion,wecharacterizediracmorphisms,i.e.mapswhichpullback(local)harmonicspinor eldsonto(local)harmonicspinor elds.1.i

3、ntroductionintroducedbyjacobi10in1848,harmonicmorphismsaremapswhichpullbacklocalharmonicfunctionsontoharmonicfunctionsand,morerecently,theywerecharacterizedbyfuglede6andishihara9ashorizontallyweaklyconformalharmonicmaps.theirdualnatureofanalyticalandgeometricalobjectshasledtoarichtheory(cf.2)whichha

4、sencouragedthestudyofvariousothermorphisms,thatismapspreservinggermsofcertaindi erentialoperators.thecentralroleofthediracoperatorindi erentialgeometryandmathematicalphysicscalledforthisapproachtobeappliedtoharmonicspinors.unlikepreviouscases,the rsthurdleistomakesenseofanotionofpull-backofspinorsby

5、amap.thisrequirestheidenti cationofthespinorbundlesinvolved,necessarilyrestrictingourinvestigationtohorizontallyconformalmapsbetweenriemannianmanifolds(cf.sec- tion2).combiningachainruleforthediracoperatorandalocalexistencelemma,weshowthatahorizontallyconformalsubmersionbetweenspinmanifoldsisadiracm

6、orphismifandonlyifitshori-zontaldistributionisintegrableandthemeancurvatureofthe bres relating the dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local

7、) harmonic spinor fields. 2e.loubeauandr.slobodeanu isrelatedtothedilationfactor,inamannerreminiscentofthefun-damentalequationforharmonicmorphisms.weconcludewithsomesimpleexamplesbetweeneuclideanspacesandexplicitourresultsintheset-upof12,whichinspiredinitiallyourconstruction. 2.pull-backofaspinor le

8、t(mm,g)beaspinriemannianmanifold,thetwo-sheetedcov-eringspin(m) so(m)inducesadoublecover:pspin(m)m pso(m)mofthebundleofpositivelyorientedorthonormalframesbytheprincipalspin(m)-bundleoverm,suchthat(sg)=(s)(g), spspin(m)m,gspin(m).theassociatedbundlecl(m)=pso(m)mclmclmisthecli ordbundle,whereclmisthec

9、li ordalgebraandclmtherepresentationofso(m)intoaut(cl(rm),andthespinorbun-dleissm=pspin(m)msm,withthespinorialrepresentationofspin(m)onthecli ordmodulesm/2 m=c2(cf.11). aspinor eldisa(smooth)sectionofsm,:u m sm,(x)=sx,(x),wheresxpspin(m)misaspinorialframeatxmand:u sm,theequivalenceclassbeingde nedby

10、 s,=sg 1,(g), forallgspin(m).thecovariantderivative ej= iss,d(ej)+1 relating the dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor

11、fields. acharacterizationofdiracmorphisms3 eeoverm,achoiceofspin-structureonanytwoofthemuniquelydeterminesaspinstructureonthethird(11).de nition1.asmoothmap:(mm,g)(nn,h)betweenrie-mannianmanifoldsisahorizontallyconformalmapif,atanypointxm,dxmapsthehorizontalspacehx=(kerdx)conformallyontot(x)n,i.e.dx

12、issurjectiveandthereexistsanumber(x)=0suchthat 2(h)x =(x)gx .hxhxhxhx thefunctionisthedilationofandtheorthogonalcomplementofhxistheverticaldistributionvx=kerdx. themeancurvaturesofthedistributionshandvaredenotedhandvandihistheintegrabilitytensorofh. a=1,.,m naframeva,xi ioftmwillbecalledadaptedifvav

13、,a=1,.,n 1,.,m nandxi i=1,.,nisthehorizontalliftbyofanorthonormalframexii=1,.,nonn. notethat1correspondstoriemanniansubmersions. wecallthemap:(mm,g1)(nn,h),whereg1= h+gv,theassociatedriemanniansubmersionof:(mm,g)(nn,h). sinceageneralsubmersion:(mm,g)(nn,h),betweenspinriemannianmanifolds,splitsthetan

14、gentbundletmintohv,ifhadmitsaspinstructure,sodoesvand (1) cl(v).cl(m)=cl(h) thespinstructurespspin(n)handpspin(m n)vinduceaspinstructurepspin(m)mbyprolongationoftheprincipalbundlepspin(n)spin(m n)m(cf.8).generalpropertiesofassociatedbundlesofreducedprincipalbundles(8,theorem3.1)togetherwithadimensio

15、ncountyieldthefollowingisomorphismsof(associated)vectorbundles (2)s+m=sh sv whenmisevenandnodd,and (3) fortheremainingcases.sm=sh sv relating the dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize dirac morphisms, i.e. maps which pull

16、back (local) harmonic spinor fields onto (local) harmonic spinor fields. 4e.loubeauandr.slobodeanu foranymap:mnintoaspinmanifold,considerthepull-backspinorbundle 1sn=(x,s,)msn| s(s,)=(x), where sistheprojectionmapofsn. ifisariemanniansubmersion,thentheisomorphism 1sn=sh,duetotheidenti cationoforthon

17、ormalframes,simpli es(2)and(3)into(cf.4) (4)s+m= 1sn svsm= 1sn sv. remark1.whenisariemanniansubmersionwithtotallygeodesic bres,hiscomplete,nconnectedandthe bresareisometrictoariemannianmanifoldf.ifnandfarespinmanifolds,consideronmtheinducedspinstructureand,viatheisomorphism 1sn=sh, (2)and(3)read(see

18、12) s+m= 1sn sf,sm= 1sn sf. remark2.ifniseven,thecli ordalgebraclnpossessesanirre-duciblecomplexmodulesnofcomplexdimension2n/2,thecomplexspinormodule.whenrestrictedtocl0nthespinormoduledecomposes + intosn=snsn,thesubmodulesofspinorsofpositiveandnegative chirality,characterizedbytheactionofthevolumee

19、lement,onceanorientationisgiven.inparticular,thespingroupspin(n) cl0nacts + onsnandonsn(thespinorrepresentations). 0ifnisodd,thenclnhastwoinequivalentirreduciblemodulessnand 1sn,bothofcomplexdimension2(n 1)/2(againdistinguishedbytheac-tionofthevolumeelement).whenrestrictedtocl0nthetwomodules 0become

20、equivalentandwesimplywritesn=snandthespinorrepre- sentation:spin0(n)aut(sn)becomesirreducible. ifniseven,thensn+1pullsbacktosnunderthealgebraisomorphismcln=cl0n+1.inotherwords,wecanregardsn+1asthespinorrep-resentationofcln,providedwede netheactionofclnonsn+1byv e0v. similarly,ifnisodd,thentheactiono

21、fthevolumeformshowsthat+ 01sn+1pullsbacktosnwhilesn+1pullsbacktosn. relating the dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor

22、fields. acharacterizationofdiracmorphisms5 when:(mn+1,g)(nn,h)isariemanniansubmersionwithone-dimensional bresintoaspinmanifoldnn,themanifoldmn+1inheritsanaturalspinstructure,cf13.moreover,ifniseven,thensm= 1snand,whennisodd,thens+m= 1sn. theseidenti cationsjustifythefollowingde nition. de nition2(ri

23、emanniansubmersions).let:(mm,g)(nn,h)beariemanniansubmersionbetweenspinmanifoldsandendowtheverticalbundlewiththeinducedspinstructure(ifm=n+1,weconsideronmthenaturalspinstructureinheritedfromn).let= s,bea(local)spinor eldonn.sincealocalspinframes=xii=1,.,nonnliftstoanadaptedspinframeonm s =x i,vaa=1,

24、.,m ni=1,.,npspin(n)z2spin(m n)m| 1u, wherex iisthehorizontalliftofxiandvaa=1,.,m nisanorthonor-malframeofv,wede nethepull-back ifm 1=n,thesection = s oftobe, ofthebundle 1sn,identi edwithsm,whenniseven,andwiths+m,whennisodd. ifm n2,thesection =s , =( ) in 1sn sv,beingasectionofsv,identi edwiths+m,w

25、hennisoddandmeven,andwithsmotherwise. remark3.notethatcli ordmultiplicationwiththiskindofspinor eldsisgivenby x =x ;v =i ) v, whenm n2,wherex isthehorizontalliftofthevector eldx(tn)and relating the dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we

26、 characterize dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields. 6e.loubeauandr.slobodeanu (cf.11) :sm1sm (s,)=(s), where(s)=ei=ei1,vaifs=ei1,va,thebundleisometryinducedbythespin-equivariantmap :pspin(n)z2spin(m n)m1pspin(n)z2spin(m n)m giv

27、enbythenaturalcorrespondencebetweenadaptedorthogonalframeswithrespecttothetwometrics:e1 i1= ei,va1=va. thecli ordmultiplicationwillbegivenby ei= ei11 ,va=(va1), where= 1. de nition3(horizontallyconformalsubmersions).let:(mm,g)(nn,h)beahorizontallyconformalsubmersionbetweenspinmani-foldsandendowtheve

28、rticalbundlewiththeinducedspinstructure.let=s,bea(local)spinor eldonn.thepull-backofis = 1,where 1isthepull-backofbytheassociatedriemanniansubmersion:(mm,g1)(nn,h)andthebundleisometrybetweensm1andsm. 3.diracmorphismswithhighdimensionalfibres throughoutthissectionhas bresofdimensionatleasttwo. de nit

29、ion4.ahorizontallyconformalsubmersion:(mm,g)(nn,h)betweenspinmanifoldsiscalledadiracmorphismifforanylocalharmonicspinorde nedonu n,suchthat 1(u)= andthereexistsasection(sv) v-parallelinhorizontaldirectionsandwithdv n relating the dirac operators on the total space and on the base manifold of a horiz

30、ontally conformal submersion, we characterize dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields. acharacterizationofdiracmorphisms7 we rstneedsomelemmas. lemma1(chainrule).let:(mm,g)(nn,h)beahorizontallyconformalsubmersionofdilation(m n2)an

31、da(local)spinor isthepull-backofby,withrespecttosomesection eldonn.if (sv),then (5)n =ddm14 ih +(2,h whereeii=1.,nisalocalorthonormalhorizontalframeonmand h denotes nihij=1eieji(ei,ej)(thestandardactionof vector-valued2-formsonspinor elds). proof.letbeahorizontallyconformalsubmersionofdilation.let a

32、=1,.,m nxii=1,.,nbeanorthonormalframeon(n,h)andva,xi i=1,.,n anorthonormaladaptedframeon(m,g1),whereg1=h+gv.with a=1,.,m nrespecttothemetricg,va,xi iisanorthonormaladapted=1,.,n frame.denoteby and 1the(spinorial)connectionscorrespondingtogandg1,andnoteei1=xi ,ei=xi . ,forthepull-backspinor eld = asd

33、ms,dm relating the dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields. 8e.loubeauandr.slobodeanu =dm =i=1n i=1 1n eiei( ) ) +

34、ei eim n a=1 va va(h0)+ n,m n 2 i,j,a=1 +1 eig( eiej,va)ejva(h2) n,m n 4 i,j,a=1 +1 vag( vaei,ej)eiej(v1) 4 a,b,c=1 notethat 1m n vag( vavb,vc)vbvc(v3).n=(dn) d 1 =(xixi( )+g1( xi xj,xk)xixjxk( ) , nwhereg1( 1 xj,xk)=h( xxj,xk).xii thecomputationbreaksdowninto vesteps: step1: n (h0)+(h1)+(h3)=dn 1 r

35、elating the dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields. acharacterizationofdiracmorphisms9 as (h0)+(h1)=n i=1eiei( )

36、+( ) ei() +1 4 i,j,k=1 thelasttermcanberewritten 1n j k 1xk()i xj()ixixjxk2 . and,sincegradh()=2gradh1(),itbecomes n 1 2 1,gradh1() = n 1 gradh1() 2 v. relating the dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize dirac morphisms, i.

37、e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields. 10e.loubeauandr.slobodeanu asg( vaej,vb)= g(ej, vavb)andvisintegrable (v2)= 1 m n m n 22va( vavb)hvb+vava,vbhvb ab=1ab=1m n va( vavb)hvb 2ab=1 step3: (8) v.(v0)+(v3)=( m n 1 ) vava()+ ) va v va. step4: (9)(h2

38、)=11 asforstep2,wehave (h2)=1h .2 2 ij=1n eiejih(ei,ej)n h i,4 relating the dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor field

39、s. acharacterizationofdiracmorphisms11 since (v1)=1 n,m n 4 i,j,a=1 =1 g(va,ei,ej) g( eiej,va)vaeiej2 va()(h2). butg(va,ei,ej)=g(va,xi ,xj)= m n a=1 44 4h 4 summingupthese vestepsyieldsthechainrule. ih. gradv(ln)1 va(ln)va11 ageneralizationof1,proposition2.4tovector-valuedfunctionsyieldslocalexisten

40、ceofharmonicspinorswithprescribedvalue.lemma2(localexistence).foranypointpmand0spm,thereexistsanopenneighbourhooduofpandaharmonicspinor:usmsuchthat(p)=0. theorem1(characterizationforhorizontallyconformalsubmersions).ahorizontallyconformalsubmersion:(m,g) (n,h)betweenspinmanifoldsisadiracmorphismifan

41、donlyifitshorizontaldistri-butionisintegrableand (11)(m n)v+(n 1)gradh(ln)=0, wherevisthemeancurvatureofthe bres. proof.letbeahorizontallyconformalsubmersionwithintegrablehorizontaldistributionandsuchthat(11)issatis ed.inthiscase,the relating the dirac operators on the total space and on the base ma

42、nifold of a horizontally conformal submersion, we characterize dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields. 12e.loubeauandr.slobodeanu chainrule(5)simpli eston+ =ddmn i=1ei( ) vei+(2.h letbealocalharmonicspinorsuchthatthereexistsasect

43、ion(sv) v-parallelinhorizontaldirectionsandwithdv n 2h=0,wehave,accordingto(5) n 0= 1 4 xi xj( ) ih(xi ,xj). ij=1 puttingx=(m n)v+(n 1)gradh(ln)andvij=ih(xi ,xj), (12)becomes 0= 1 4 ij=1 butsincevijisvertical,xandxi xjvijhavedi erentdegrees, necessarilyx=0andvij=0.therefore,ifahorizontallyconformals

44、ubmersionisdiracmorphism,itmustsatisfyequation(11)andhaveintegrablehorizontaldistribution. atpmcanbeprescribed,theaboveequationasthevalueofimpliesn 0= 1xi xjvij.4ij=1n xi xjvij.remark5.(1)notetheanalogybetweenequation(11)andthe fundamentalequationforharmonicmorphismsin2. (2)compareformula(5)with4,(4

45、.26)and12,1.1.1. (3)ifthe bresaretotallygeodesic,theintegrabilityofthehor- izontaldistributionmakesthesection“basictransversallyharmonic”,asintroducedin7. relating the dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize dirac morphisms,

46、 i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields. acharacterizationofdiracmorphisms13 corollary1.ariemanniansubmersion:(mm,g)(nn,h)be-tweenspinmanifoldsisadiracmorphismifandonlyifits bresareminimalanditshorizontaldistributionisintegrable. recallthatifisar

47、iemanniansubmersionthenh=0. remark6.ifthedilationfunctionisaprojectablefunction(i.e.v()=0),theconformalinvarianceofthediracoperator(11)allowsacorrespondencebetweenharmonicspinorsofthespacesinvolvedinthecommutativediagrambelow. (m,2 h+gv)1m-(m, h+gv) ?1n 2h)(n,(n,h) 4.diracmorphismswithone-dimensiona

48、lfibres inthissectionm=n+1. de nition5.ahorizontallyconformalsubmersion:(mn+1,g)(nn,h)betweenspinmanifoldsiscalledadiracmorphismifforanylocalharmonicspinorde nedonu n,suchthat 1(u)= and = 1isaharmonicspinoron 1(u) m,wherethepullback 1isthepullbackofbytheassociatedriemanniansubmersion. lemma3.(chainr

49、ule).let:(mn+1,g)(nn,h)beahorizon-tallyconformalsubmersionofdilationanda(local)spinor eldonn,then 1n =ddm ih.(13)4 proof.takexii=1,.,nanorthonormalframeon(nn,h)andv,ei=xi i=1,.,nanadaptedframeon(mm,g).letbea(local)spinor itspullbackby.theproofissimilartotheproofof eldonnand relating the dirac operat

50、ors on the total space and on the base manifold of a horizontally conformal submersion, we characterize dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields. 14e.loubeauandr.slobodeanu lemma1,exceptthat(h0)=),(v0)=0andtheterms(h3),(v3)donotapp

51、ear. eiei( notethath =i h 2 . theorem2.ahorizontallyconformalsubmersion:(mn+1,g)(nn,h)betweenspinmanifoldsisadiracmorphismifandonlyifitshorizontaldistributionisintegrableandminimal,and v+(n 1)gradh(ln)=0, wherevisthemeancurvatureofthe bres. proof.theargumentissimilartotheoneoftheorem1,exceptthat x=v

52、+(n 1)gradh(ln)+nh. observethatx=0ifandonlyifv+(n 1)gradh(ln)=0andh=0,astheybelongtoorthogonaldistributions. corollary2.ariemanniansubmersion:(mn+1,g)(nn,h)betweenspinmanifoldsisadiracmorphismifandonlyifitshorizontaldistributionisintegrableandthe bresareminimal. remark7.supposethatisariemanniansubme

53、rsion. (1)thechainrule(13)givesustheformulaof13(wherethe bresareminimal) (14)dm =d n 1 4i n x jax jvj=1 relating the dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields. acharacterizationofdiracmorphisms15 ,inaglobalspinframe(e=1 thediracoperatoronr2 02=dr=(e1) y2 = + y2)onr2,and representation,thediracoperatoronris dr3 x13, x3,andwiththepauli=ik x3 x1 i x1 x1= 2 x2= 2 x3= 2 let:r4 r2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论