




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一次函数说课稿 作为一名人民教师,常常要写一份优秀的说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。我们该怎么去写说课稿呢?下面是为大家收集的一次函数说课稿,欢迎阅读与收藏。 一次函数说课稿1 一、教材分析(一)教材的地位和作用函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美,学生在探索过程中体验到的数形结合以及数学建模思想,既是对前面所学知识的升华,同时也对今后学习高中的解析几何有着十分重要的意义。(二)教学目标新一轮的课程改革
2、,旨在促进学生全面、持续、和谐的发展,我认为本节课的教学应达到以下目标:知识技能方面:理解一次函数与二元一次方程组的关系,会用图象法解二元一次方程组;数学思考方面:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去思考问题;解决问题方面:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题;情感态度方面:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信。(三)教学重、难点从以上目标可以看出,学生既要通过对一次函数与二元一次方程(组)关
3、系的探究,习得知识、培养能力,又要用此关系解决相关实际问题,因此,本节课的教学重点应是一次函数与二元一次方程(组)关系的探索。考虑到八年级学生的数学应用意识不强,本节课的难点应是综合运用方程(组)、不等式和函数的知识解决相关实际问题。而关键则是通过问题情境的设计,激发学生的求知欲,引导学生探索、交流,引导学生发现、分析、解决问题。二、教法分析数学课程标准明确指出“数学教学是数学活动的教学”,“学生是数学学习的主人”。教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生自由探索、合作交流与实践创新。对于认知主体来说,八年级学生乐于探索,富于幻想,但他们的数学推理能力以
4、及对知识的主动迁移能力较弱,为帮助学生更好地构建新的认知结构,促进学生的主动发展,本节课我采用情境探究式教学法,以“情境问题探究交流应用反思提高” 的模式展开,以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快学习。三、过程分析本着重实际、重探究、重过程、重交流的教学宗旨,我将本节课的教学设计成以下六个环节:情景导入探究合作解决问题巩固提高归纳小结布置作业。这节课,我首先用贴近学生实际、学生感兴趣的问题上网交费问题引导学生进入本节课的学习,充分调动学生的积极性。课件展示学生回答的用列方程组解答的过程,并提出问题:“同学们在解这个二元一次方程组时,基本上都是用的代入法或加减法,那么
5、解二元一次方程组还有其它的方法吗?”学生讨论后可能会感到束手无策,感到原有的知识不够用了。一石激起千层浪,问题提出来后,如何解决呢?此时,作为教师,应把握好组织者、引导者和合作者的身份,不要急于发表自己的意见,而应启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的态势,从而唤起学生强烈的学习热情,使他们主动积极地投入到探索活动中来。另外,此问题的设置也为后面例题的讲解作好铺垫,有利于教学难点的突破。为使学生更好地掌握本节课的重点知识,我遵循从特殊到一般,再从一般到特殊的认知规律,设计了以下问题“你们能否将方程转化为一次函数的形式呢?”“如果能,你们能在
6、平面直角坐标系中能画出它的图象吗?”在学生将方程转化为一次函数的形式并画出图象后,我引导学生观察直线上的几个点,发现它们的坐标都是方程的解,紧接着问“直线上任意一点的坐标一定是方程的解吗?”“是否任意的二元一次方程都可以转化为一次函数的形式呢?”“是否所有直线上任意一点的坐标都是它所对应的二元一次方程的解呢?”学生先独立思考,然后小组讨论,不难发现:每个二元一次方程都对应一个一次函数,于是也就对应一条直线。一连串的问题由浅入深,环环相扣,引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。紧接着问学生:“你能用刚才的方法研究另一个方程
7、2xy=1吗?”学生在同一坐标系中画出一次函数y=2x1的图象后,发现两条直线有一个交点,我又问“这个交点坐标与这两条直线所对应的方程的解有什么关系?与这两个方程组成的方程组的解又有什么关系?”此时,学生慢慢体会到:既然每个二元一次方程都对应一条直线,二元一次方程的每一个解又对应直线上的每一个点,那么两个二元一次方程的公共解就对应着两条直线的公共点,也就是说,二元一次方程组的解不就是对应着两条直线的交点吗?这个时期,教师应留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予及时帮助,师生共同归纳出:用画图象的方法可以解二元一次方程组,从而解决了本节课开头所提出的问题。然后共同归纳:从“形
8、”的角度看,解方程组相当于确定两条直线交点的坐标。这告诉我们,既可用画图象的方法可以解二元一次方程组,也可用解方程组的方法求两条直线交点的坐标。利用刚才已有的探究经验,学生很容易想到此问题的探究还可以从数的角度看,进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,这个函数值是何值。这样,学生经过自主探索、合作交流,从数和形两个角度认识了一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,并使学习过程成为一种再创造的过程。学生从一个个小问题的回答,到最后的归纳,充分享受学习、探究带来的快乐,此时教师应充分肯定学生的探究成果,及时对学生进行鼓励,关注学生的情感
9、体验。为满足学生学以致用、争强好胜的心理需求,我特意设计了两个抢答题,既加强了对所学知识的消化理解,又调动了学生的积极性,更让他们在抢答中品味到了成功的快乐。趁着学生高涨的情绪,我迅速引入开头部分意犹未尽的上网收费问题,加以变式,再次激起学生强烈的求知欲望和主人翁的学习姿态。经过一番探索,学生可能想到:要选择合理的收费方式就需要对它们所收费用的大小进行比较,因此一定会有学生用过去的知识方程或不等式解决问题,对于这部分学生的想法要给予充分的肯定表扬,然后继续提问“你能用今天所学的图象法来解决这个问题吗?”引导学生建立函数模型进行探索。学生在同一坐标系中分别画出两个一次函数的图象后,我引导学生观察
10、图象的特征,学生讨论后发现当0 x 400时,红色点在蓝色点的下方,这样利用直线上点位置的高低直观地比较函数值的大小,从而找到答案。为避免图象法作图误差造成的不足,可引导学生通过代数计算求出交点坐标。为培养学生一题多解的能力,我启发学生用作差法,类似地用点位置的高低直观地找到y>0,y=0 及y0时,y随x的增大而增大,这时函数的图象从左到右上升k0时,y随着x的增大而增大,这时函数的图象从左到右上升;(2)当k0(2) 观察函数y=2x-4图象,当自变量x为何值时,函数值大于0?这一环节中,师生共同完成3个任务:教会学生看图、建立数形关系、归纳总结图像法解不等式的步骤。所以,首先让学生
11、画出引例中函数y=2x-4的图像。从y=0入手,然后分组讨论图像上y>0和y0的部分染色。通过观察让学生发现图像上y>0的部分也就是x轴上方的部分。相应地,y0时相应的x的值。通过对以上两个问题的解决,使学生认识到解不等式2x-4>0也就是求函数y=2x-4图像上,当y>0时相应的x的取值范围,从而建立数形关系。最后引导学生归纳总结利用函数图像求不等式解集的步骤,这也是本节课的难点。(1) 把一元一次不等式转化为ax+b>0或ax+b<0的形式;(2) 画出一次函数图象;(3) 一次函数值大于(或小于)0时相应的自变量的取值范围,实质上是一次函数图像上x轴上
12、方的点(或下方的点)对应的自变量的取值范围。(三)应用新知例2的设计是让学生进一步熟悉图像法解不等式的一般步骤,这也就是教材上的方法1,要求学生重点掌握。方法2有一定难度,本节课不再重点讨论。例2:用画函数图像的方法解不等式5x+4<2x+10。方法1:原不等式化为3x-60, 画出直线y=3x-6。可以看出,当x<2时这条直线上的点在x轴的下方,即这时y=3x-6<0,所以不等式的解集为x<2方法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10。可以看出,它们的交点的横坐标为2。当x<2时,对于同一个x,直线y=5x+4在直线y
13、=2x+10上相应点的下方。这时5x+4<2x+10,所以不等式的解集为x0; (4)y<2.设计意图:本题学生很容易想到代值求解,为了突出数与形的结合,要求学生利用图像解决问题。2 利用函数图象解出x:(1)6x-4=3x-2; (2)6x-4y2?自我反思应用新知中的方法2是初三数学中的重要方法,但考虑到学生的情况本节课没有详细讲。实际教学中可以根据学生的接受情况对本节内容进行适当的拓广延伸,尝试与中招考试衔接。这节课涉及到利用函数图像求解集的问题,采用几何画板动态演示的课堂效果会更好。 一次函数说课稿11 各位评委、老师们:大家好!今天能有这个展示的机会,得到各位评委、老师的
14、指导,感到非常荣幸、本节课的内容是一次函数与二元一次方程(组),选自人教版教科书八年级上册第十四章,下面我将对这节课的教学设计加以说明、这部分内容是在学生充分认识了一元一次方程、二元一次方程(组)和一元一次不等式的基础上,对一次运算进行更深入的讨论、用一次函数将上述几个数学对象统一起来认识,发挥函数对相关内容的统领作用、之前已经用两课时学习了一次函数与一元一次方程、一元一次不等式的关系,本节课是对一次函数与二元一次方程(组)关系的探究、基于以上对教学内容的理解,结合我所教学生的特点,我确定本节课教学目标为:1.理解一次函数与二元一次方程(组)的关系、2.学习利用函数解决问题的方法,感受数学知识
15、之间的内在联系,进一步体会数形结合的数学思想、3.通过现实化的实际问题背景,反映祖国科技和经济的发展、一、创设情境,提出问题本课的教学过程分为五个环节完成、首先请看“创设情境,提出问题”的教学过程、(插入录像1)设计意图:因为学生对刚学过的一次函数理解得还不够透彻,有一定的畏难情绪,并且他们对一元一次方程、二元一次方程(组)和一元一次不等式都很熟悉,因而缺乏学习这部分内容的热情,或者只是机械地背记结论,所以我从本课引入部分,就力求能马上吸引住学生。通过对一道七年级课本中曾经解决过的问题的再认识,使学生在认知上形成冲突,从而产生学习新知的需要;接着我设计了一个师生互动的游戏,使学生对老师是怎么迅
16、速判断出方程组解的情况产生了强烈的好奇心,从而有了学习新知的强烈愿望、(插入录像2)二、循序渐进,学习新知1、进入新知的学习,我首先通过一段视频为学生创设了一个贯穿整节课的问题情境,使学生始终在倍感新鲜的环境中进行学习、本课新知由两部分构成,一是研究一次函数与二元一次方程的关系,二是研究一次函数与二元一次方程组的关系,下面请看第一部分的教学过程、(插入录像3)设计意图:研究一次函数与二元一次方程的关系是本课的重点,如何实现从方程到函数的转化也是本课的难点、我没有仅停留在两者形式上的转化,而是从实际出发,通过设置一个个问题,引导学生直观感受变量,感受函数关系,从而自然实现了从二元一次方程,到一次
17、函数的转化,突出了函数思想、2、下面请看学生如何“研究一次函数与二元一次方程组的关系”、(插入录像4)设计意图:因为已经研究了一次函数与二元一次方程的关系,所以学生完全可以通过独立思考、合作探究得到一次函数与二元一次方程组的关系、我仍然坚持从特殊到一般的探究方式,启发引导学生充分讨论特殊图象交点坐标的含义,从而自然的从“数”和“形”两方面加深了对二元一次方程组的理解、三、剖析例题,巩固新知为了帮助学生加深对所学内容的理解,我设计了下面的例题、(插入录像5)设计意图:例题仍然坚持了本课统一的问题背景,教师鼓励学生自主探究、合作交流,课堂上学生分别运用一元一次方程、一元一次不等式、一次函数等三种方
18、法求解了此题,并且对于各种解法的优劣、变量的取值范围和该如何画函数图象等方面都形成了讨论,接着由学生互相启发补充,予以解决、通过从不同的角度解决问题,既帮助学生巩固了对一次方程(组)、不等式和一次函数的关系的理解,又使学生获得了一些研究问题的方法和经验,发展了思维能力、四、解决问题,加深认识下面请看第四个环节“解决问题,加深认识”的教学过程、(插入录像6)设计意图:本环节照应了引入部分,既解决了当时提出的问题,又引导学生在课下继续思考二元一次方程组解的情况与同一平面内两条直线不同位置之间的对应关系,从而更加深了对方程组解的图形解释的理解,切身感受到了数形结合思想的应用,为将来高中解析几何的学习
19、做一些铺垫、五、归纳小结,布置作业接下来我引导学生从知识与方法两个方面总结本节课的学习,并给学生布置必做作业和选做作业、这就是我对这节课的教学设计,其中难免有很多不足之处,真诚的希望得到各位老师的批评指正,以使我在今后的教学中加以改进、谢谢! 一次函数说课稿12 一、 教材分析(一)本节内容在教材中的地位和作用本课的内容是华师大版八年级数学下册第18章第3节第2课时,一次函数在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本章中关于一次函数的知识结构如图:本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比
20、例函数的图象和性质的拓展,又是今后继续学习"用函数观点看方程(组)与不等式"的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习"数形结合"这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。(二) 教学目标基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:知识目标:1、理解直线y=kx+b与y=kx之间的位置关系;2、会利用两个合适的点画出一次函数的图象;3、掌握一次函数的性质。能力目标1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;2、通过一次函数的图象总
21、结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。情感态度目标:1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。(三)教学重点难点教学重点:一次函数的图象和性质。教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。二、教法学法1、教学方法1、自学体验法利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。2、直观教学法利用多媒体现代教学手段。
22、目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。2、学法指导1、应用自主探究,培养学生独立思考能力,阅读能力和自主探究的学习习惯。2、指导学生观察图象,分析材料。培养观察总结能力。三、 教学程序设计(一)、创设情境,导入新课活动1:观察:展示学生作的函数图象 (课本p41 做一做),强调列表及图象上的点的对应关系。1.课前让两名学生将图像画到黑板上,以备上课时应用。2、课上展示学生函数图像作业 ,既为学生完成作业情况检查,又为本节课打下基础。 这样安排的目的: 1、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后
23、面的发现规律作了准备。2、教师对学生有了更深层次的了解,能更好地把握课堂。(二)尝试探索、体验新知:活动2、观察探索:比较两个函数图象的相同点与不同点?第一步;根据你的观察结果回答问题。(书中原问题1、2、3)目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。第二步:在学生作出的两条平行直线中,教师先引导学生观察正比例函数图象的交点情况,引用两点法(两点确定线);在此基础上引导学生发现"直线y=-6x+5与坐标轴交点"并思考:一次函数y=-6x+5又如何作
24、出图象?目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点(0,b),和(-b/k,0)两点;此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。活动3:知识再体验:在同一直角坐标系中画出四个k值不同的一次函数图象,并观察分析。目的:进一步巩固两点作图法,为探究一次函数的性质作准备。活动4:展示"上下坡"材料,解决象限问题。(多媒体展示)目的:让学生触发漫画中"上下坡"的情景,引导思考k、b对图象的影响设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知
25、识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。活动5:师生互动(师生角色互换),提高拓展。(多媒体展出内容)目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。(三)课堂小结引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受。目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。(四)。作业布置加强"教、学"反思,进一步提高"教与学"效果,做课本42页 44页习题。 一次函数说课稿13 各位专家,
26、各位老师,大家好!今天我说课的课题是“义务教育课程标准实验教科书”八年级上册第六章第五节一次函数图象的应用第二课时,我将分以下几个方面进行分析:一, 教材分析新的课程标准将初中学段的数学知识分为四个领域,“数与代数”“空间与图形”“统计与概率”“实践与综和”,每个领域在三个年级里都是螺旋上升的,由于学生在七年级下册学习了变量之间的关系,学生对函数研究世界变化规律的一个重要模型,已经有了一定的感性认识。而且通过“一次函数图象的应用”第一节的学习,学生的识图能力增强了,通过识图解决实际问题的求知欲望更迫切了,同时本节也渗透了数形结合,形象思维能力的培养,为以后学习其他函数奠定了兴趣基础和能力基础,
27、因此,本节课在整个教材中起到了承上启下的作用,由于本节内容针对的学习者是八年级上的学生,已经具备了一定的生活经验和初步教学活动体验,乐意并能够与同伴进行合作交流共享,为此确定目标如下:二, 教学目标(一) 知识与技能目标1, 经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力。2, 经历函数图象信息的识别与应用过程,发展学生的形象思维能力。3, 更进一步培养学生的识图能力,即从“形”的方面解决问题。(二) 情感与态度目标1, 进一步形成利用函数的观点认识现实世界的意识和能力。2, 通过学生自主探索研究生活中的事例,如“台风麦莎”对岛城的影响,促进学生的思考认知能力,激发学数学用
28、数学的兴趣,培养团队协作意识和关心时事的意识。3, 丰富学生数学学习的成功体验。三, 教学重点和难点及关键本节课的教学重点是进一步培养学生良好的识图能力,更深层的体会数形结合,难点是富有挑战性的数学史料。四, 教学理念和教学方式本节课将采用“教师为主导,学生为主体,训练为主线,思维为核心”的教学理念,以人的“兴趣学习”和“可持续发展”为关注目标,来体现教学方式中的“新意”。教学中将采用合作交流和自主探究的教学策略,重视培养学生的独立思考能力,“数形结合”分析问题的能力,鼓励学生大胆里利用图形解决问题,培养创新精神。评价方式体现多元化和人性化,关注思维,即解决问题的过程,淡化对知识的机械记忆,针
29、对个人和小组进行及时的赞赏和肯定。五, 教学媒体和教学技术选用为使教学活动更有效,符合八年级上学生的年龄特点,需要教学媒体技术的支持,丰富学生的认知资源,拓展学生的思维空间。六, 教学和活动过程(一) 教学准备:1,提前一天了解“麦莎”的有关内容。2,复习“一次函数图象的应用”第一节(二) 教学过程全课分为五个教学环节1, 情景引入 学习新知。2分钟2, 议一议 探索新知。 8分钟3, 练一练 巩固新知。 10分钟4, 试一试 开阔思路。 5分钟5, 读一读 培养兴趣。 7分钟6, 练一练 巩固新知。 8分钟7, 想一想 感悟收获。 4分钟8, 布置作业。 1分钟具体过程如下:(多媒体课件)
30、一次函数说课稿14 一次函数是初中阶段研究的第一个函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。以下是一次函数说课稿,欢迎阅览!我今天说课的内容是*版八年级上册第七章第三节一次函数第1课时,下面我将从教材分析、教法学法分析、教学过程分析和设计说明等几个环节对本节课进行说明。一、教材分析1、教材地位和作用本节课是在学生学习了常量和变量及函数的基本概念的基础上学习的,学好一次函数的概念将为接下来学习一次函数的图象和应用打下坚实的基础,同时也有利于以后学习反比例函数和二次函数,所以学好本节内容至关重要。2、教学目标分析根据新课程标准,我确定以下教学目标:知识和
31、技能目标:理解正比例函数和一次函数的概念,会根据数量关系求正比例函数和一次函数的解析式。过程和方法目标:经历一次函数、正比例函数的形成过程,培养学生的观察能力和总结归纳能力。情感和态度目标:运用函数可以解决生活中的一些复杂问题,使学生体会到了数学的使用价值,同时也激发了学生的学习兴趣。3、教学重难点本节教学重点是一次函数、正比例函数的概念和解析式,由于例2的问题情境比较复杂,学生缺乏这方面的经验,是本节教学的难点。二、教法学法分析八年级的学生具备一定的归纳总结和表达能力,所以本节课采用创设情境,归纳总结和自主探索的学习方式,让学生积极主动地参与到学习活动中去,成为学习的主体,同时教师引导性讲解
32、也是不可缺少的教学手段。根据教材的特点,为了更有效地突出重点,突破难点,采用了现代教学技术-多媒体和实物投影。三、教学过程分析本节教学过程分为:创设情境,引入新课归纳总结,得出概念运用概念体验成功梳理概括,归纳小结布置作业,巩固提高。为了引入新课,我创设了以下四个问题情境,请学生列出函数关系式:(1)梨子的单价为6元/千克,买t千克梨子需m元钱,则m与t的函数关系式为 m=6t .(2)小明站在广场中心,记向东为正,若他以2千米/时的速度向正西方向行走x小时,则他离开广场中心的距离y与x之间的函数关系式为 y=-2x .(3)小芳的储蓄罐里原来有3元钱,现在她打算每天存入储蓄罐2元钱,则x天后
33、小芳的储蓄罐里有y元钱,那么y与x之间的函数关系式为 y=2x+3 .(4)游泳池里原有水936立方米,现以每小时312立方米的速度将水放出,设放水时间为t时,游泳池内的存水量为q立方米,则q关于是t的函数关系式为 q=936-312t .然后请学生观察这些函数,它们有哪些共同特征?m=6t;y=-2x;y=2x+3;q=936-312t学生们各抒己见,最后由教师引导学生得出:它们中含自变量的代数式都是整式,并且自变量的次数都是一次。然后再问:你们能否用一条一般式来表示它们的共同特点?学生可能用两条一般式来表示:y=ax与y=bx+c(因为这节课我已上过)。教师对两条都进行肯定,同时追问;这两
34、条能否选择一条呢?经过讨论,最后确定式子y=kx+b为能代表共同特征的解析式,我们称之为一次函数,今天这节课我们就来学习一次函数。这样通过创设问题情境,让学生通过比较函数解析式的具体特征,引出一次函数,提出了课题,让学生感受到一次函数存在于生活中,与我们并不陌生,增强了学生学好本节课的信心,同时也为一次函数概念的落实打下基础。提出课题后,教师说明:一般地,函数y=kx+b就叫做一次函数。然后问学生:作为一次函数的解析式y=kx+b,在y、k、x、b中,哪些是常量,哪些是变量?哪一个是自变量?哪个是自变量的函数?很明显, x、y是变量,其中自变量是x,y是x的函数,k、b是常量。那么对于一般的一
35、次函数,自变量x的取值范围是什么?k、b能取任何值吗?很明显,x可取全体实数,k、b都是常数,但k0,因为如果k=0,那么kx=0,就不是一次函数了,所以一次函数的一般式后面应添上k、b都是常数,且k0,这里的k叫做比例系数。那么b可以等于0吗?当然可以,b=0就是引例中前2条式子的一般式,由此可知,当b=0时,函数就成了y=kx,它是特殊的一次函数,我们称之为正比例函数,其中的常数k也叫做比例系数。由于一次函数和正比例函数的概念是本节课的重点,所以得出概念后,教师还应对概念进行强调:一次函数的一次指的是自变量x的指数是1次;比例系数k不能为0,但既可取正数,也可取负数;b可以为任何实数,当它
36、取0时为正比例函数,也可以这样说:所有形如y=kx+b(k0)的函数都是一次函数,反过来,所有的一次函数都可以写成y=kx+b的形式。同理,所有形如y=kx(k0)的式子都是正比例函数,反过来,所有的正比例函数都可以写成y=kx形式。为了及时巩固概念,教师以快速抢答的形式让学生完成书上做一做:做一做:下列函数中,哪些是一次函数,哪些是正比例函数?系数k和常数项b的值各是多少?c=2r;y=x+200;t=;y=2(3-x);s=x(50-x)做完此题教师应强调:中为常数,所以比例系数为2;、应先化,简,巩固了一次函数的概念,此时出示例1,学生就显得比较轻松。例1:求出下列各题中x与y之间的关系
37、式,并判断y是否为x的一次函数,是否为正比例函数?某农场种植玉米,每平方米种玉米6株,玉米株数y与种植面积x(m2)之间的关系。正方形周长x与面积y之间的关系。假定某种储蓄的月利率是0.16%,存入1000元本金后,本息和y(元)与所存月数x之间的关系。例1应由学生口答,教师板书,判断是否属于一次函数应严格按照概念中的一般式,通过本例还让学生弄清楚了正比例函数都是一次函数,而一次函数不一定都是正比例函数。同时也体会到了根据题中的数量关系可直接列出一次函数解析式。如果班里学生比较优秀,也可请大家模仿例1自己编一个例子,写出函数关系式,并判断写出的函数关系式属于哪种类型。这种编写具有一定的难度,教
38、师对于学生的一点点闪光点都要予以肯定。接着教师出示练习1:已知正比例函数y=kx,当x=-2时,y=6,求这个正比例函数的解析式。此题是书上课内练习改编过来的,书上的原题是求比例系数k,但我认为求函数解析式层次更高一些,同时为下节课的待定系数法打下基础。此题可以这样分析:要想求这个正比例函数解析式,必须求出k的值,只要把一组x、y的值代入y=kx,得到一条以k为未知数的一元一次方程,即可求出k的值,然后就可写出解析式,建议教师板书过程,如果班里学生比较优秀,教师也可提到:如何求y=kx+b的解析式呢?同理可得只要求出k、b的值就可以了,k、b是两个未知数,只要两组x、y的值代入,联立二元一次方程组即可求出k、b的值,然后就可写出解析式,具体的操作下节课再学。以上设计使学生明白了如何求一次函数解析式及判断某条函数关系式是否为一次函数的方法,但大家都知道,学习了新知识,就是为了解决实际问题。由于例2是本节课的教学难点,里面的问题情景比较复杂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业培训评估与反馈模板
- 员工培训资源清单及模板库
- 汽车维修与保养合作合同
- 2025广西钦州市北部湾大学公开招聘高层次人才53人模拟试卷及参考答案详解1套
- 借贷活动合规承诺书7篇
- 历史保护建筑修复质量承诺书3篇
- 山西省忻州市2024-2025学年高三上学期10月月考地理试题(解析版)
- 辽宁省凌源市2024-2025学年高一下学期期末考试地理试题(解析版)
- 使命彻底完成承诺书5篇
- 2025广西职业技术学院博士人才专项招聘64人模拟试卷及完整答案详解
- 页人音版三年级音乐上册音乐教案(2025-2026学年)
- 员工应急救护知识培训课件
- 2025昆明中北交通旅游(集团)有限责任公司驾驶员招聘(60人)考试参考题库及答案解析
- 2026中国航空工业集团金航数码校园招聘备考考试题库附答案解析
- 健康教育培训师资队伍建设方案
- 二类医疗器械零售经营备案质量管理制度
- 2025年医技三基考试试题及答案
- 既有建筑幕墙安全培训课件
- 2025年全国事业单位联考C类《职业能力倾向测验》试题及答案
- 英语A级常用词汇
- 气管切开非机械通气患者气道护理团体标准课件
评论
0/150
提交评论