冀教版八年级数学下册教案211一次函数第1课时_第1页
冀教版八年级数学下册教案211一次函数第1课时_第2页
冀教版八年级数学下册教案211一次函数第1课时_第3页
冀教版八年级数学下册教案211一次函数第1课时_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 1 21.1一次函数 第1课时 教学目标 1理解正比例函数的概念,并掌握正比例函数图象和性质; 2运用正比例函数解决简单的问题 教学重难点 【教学重点】 理解正比例函数的概念,并掌握正比例函数图象和性质. 【教学难点】 运用正比例函数解决简单的问题 课前准备 课件 教学过程 一、情境导入 鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环;大约128天后,人们在2.56万千米外的澳大利亚发现了它 (1)这只百余克重的小鸟大约平均每天飞行多少千米? (2)这只燕鸥飞行一个半月(一个月按30天计算)的行程大约是多少千米? (3)这只燕鸥的行程y(单位:千米)与飞行时间x(单位:天)之间有什么关系? 二

2、、合作探究 探究点一:正比例函数 【类型一】 辨别正比例函数 下列式子中,表示y是x的正比例函数的是( ) Ay2x Byx2 Cyx2 Dy2x 解析:选项A,y2x,自变量次数不为1,错误;选项B,yx2,是和的形式,错误;选项C,yx2,自变量次数不为1,错误;选项D,y2x,符合正比例函数的含义,正确故选D. 方法总结:正比例函数ykx成立的条件是:k为常数且k0,自变量次数为1. 【类型二】 确定正比例函数中字母的值 若函数y(m3)x|m|2是正比例函数,则m的值为( ) A3 B3 C±3 D不能确定 解析:由题意得|m|21,且m30,解得m3.故选B. 方法总结:正

3、比例函数自变量的指数为1,系数不能为0. 探究点二:正比例函数的图象和性质 【类型一】 正比例函数的图象 在下列各图象中,表示函数y 2 kx(k0)的图象的是( ) 解析:k0,k0,函数ykx(k0)的值随自变量x的增大而增大,且函数为正比例函数故选C. 方法总结:要知道正比例函数的图象是过原点的直线,且当k0时,图象过第一、三象限;当k0时,图象过第二、四象限 【类型二】 正比例函数的性质 关于函数y13x,下列结论中,正确的是( ) A函数图象经过点(1,3) B不论x为何值,总有y0 Cy随x的增大而减小 D函数图象经过第一、三象限 解析:A.当x1时,y13,故A选项错误;B.只有

4、当x0时,y0,故B选项错误;C.k130,y随x的增大而增大,故C选项错误;D. k130,函数图象经过第一、三象限,故D选项正确故选D. 方法总结:解题的关键是了解正比例函数的比例系数的符号与正比例函数的关系及其增减性 【类型三】 正比例函数的图象与系数的关系 已知正比例函数y(m1)x的图象上两点A(x1,y1),B(x2,y2),当x1x2时,有y1y2,那么m的取值范围是( ) Am1 Bm1 Cm2 Dm0 解析:根据题意,y随x的增大而减小,则m10,即m1.故选A. 方法总结:直线ykx所在的位置与k的符号有直接的关系:k0时,直线必经过第一、三象限,y随x的增大而增大;k0时

5、,直线必经过第二、四象限,y随x的增大而减小 【类型四】 正比例函数图象上点的坐标特征 点A(5,y1)和B(2,y2)都在直线yx上,则y1与y2的关系是( ) Ay1y2 By1y2 Cy1y2 Dy1y2 解析:点A(5,y1)和B(2,y2)都在直线yx上,y15,y22.52,y1y2.故选C. 方法总结:熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键 探究点三:求正比例函数的解析式 【类型一】 用定义求正比例函数的解析式 已知yy1y2,y1与x2成正比例,y2与x2成正比例,当x1时,y5;当x1时,y11,求y与x之间的函数表达式,并求当x2时y的值 解析:

6、设y1kx2,y2a(x2),得出ykx2a(x2),把x1,y5和x1,y11代入得出方程组,求出方程组的解即可,把x2代入函数解析式,即可得出答案 解:设y1kx2,y2a(x2),则ykx2a(x2),把x1,y5和x1,y11代入 3 得?ka5,k3a11,解得?a3,k2,y与x之间的函数表达式是y2x23(x2)把x2代入得y2×223×(22)8. 方法总结:用定义求函数解析式,设出解析式是解题的关键一步 【类型二】 用待定系数法求正比例函数的解析式 已知正比例函数ykx图象经过点(3,6),求: (1)这个函数的解析式; (2)判断点A(4,2)是否在这个

7、函数图象上; (3)图象上两点B(x1,y1)、C(x2,y2),如果x1x2,比较y1,y2的大小 解析:(1)利用待定系数法把(3,6)代入正比例函数ykx中计算出k即可得到解析式;(2)将A点的横坐标代入正比例函数关系式,计算函数值,若函数值等于2,则A点在这个函数图象上,否则不在这个函数图象上;(3)根据正比例函数的性质:当k0时,y随x的增大而减小,即可判断 解:(1)正比例函数ykx经过点(3,6),63·k,解得k2,这个正比例函数的解析式为y2x; (2)将x4代入y2x得y82,点A(4,2)不在这个函数图象上; (3)k20,y随x的增大而减小x1x2,y1y2. 方法总结:将A点的横坐标代入正比例函数关系式,求出函数值,再进一步判定是解决问题的关键 三、板书设计 1正比例函数的图象 2正比例函数的性质 3正比例函数解析式的确定 四、教学反思 本节课在教师引导下使学生通过自己的观察、研究、自

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论