北大附中七年级期末数学试卷_第1页
北大附中七年级期末数学试卷_第2页
北大附中七年级期末数学试卷_第3页
北大附中七年级期末数学试卷_第4页
北大附中七年级期末数学试卷_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、北大附中七年级(下)期末数学试卷一、挑选题(本大题共8 个小题,每道题3 分,共 24 分)1(3 分)如图,直线 ab ,cd 相交于点o,eo ab 于点 o,就图中 1 与 2 的关系是()a 相 等b 互余c 互补d 没有关系2( 3 分)以下坐标中表示的点位于其次象限的是()a ( 0, 1)b ( 3, 2)c ( 2, 1)d ( 2, 3)3( 3 分)已知二元一次方程组,就 x+y 等于()a 2b 3c 1d 54( 3 分)已知以下各组数据,可以构成等腰三角形的是()a 1, 2, 1b 2, 2,1c 1, 3,1d 2, 2, 55( 3 分)不等式2x 50 的正整

2、数解有()个a 0b 1c 2d 36( 3 分)全等三角形是()a 面 积相等的三角形c 周 长相等的三角形b 角相等的三角形d 能够完全重合的三角形7( 3 分)如 3xn 1 axn+1=12xn,就 a 与 n 的值()a a=3, n=5b a=4, n=5c a=2 ,n=3d a=4, n=48( 3 分)如图,四边形abcd中, ab=bd=da=ac,就四边形abcd中,最大的内角的度数是()a 90° b 120°c135°d 150°二、填空题9( 3 分)如图,已知直线l1 l2, 1=40°,那么 2= 度10( 3

3、分)方程3x+4y=7 的非负整数解为 11(3 分)如 a ( m,n)在第三象限,就b ( 1m , 3n 5)在第 象限12( 3 分)自钝角的顶点引角的一边的垂线,把这个钝角分成两个角的度数之比是3:1,就这个钝角的度数是 13( 3 分)甲数的2 倍比乙数大30,乙数的 3 倍比甲数的4 倍少 20,求甲、乙两数,如设甲、乙两数分别为x、y ,就可得方程组14( 3 分)如图,已知ab de ,ab=de , af=dc ,在图中有 对全等三角形15( 3 分)如等腰三角形的周长为12,就腰长a 的取值范畴是 16( 3 分)等腰三角形一个角为45°,就此等腰三角形顶角为

4、三、解答题17解不等式及不等式组( 1) 2x+1 3( 2)18解不等式 1,并把解集在数轴上表示出来19如图,在 abc 的 ab 、ac 边的外侧作等边ace 和等边 abf ,连接 be 、cf 相交于点o,( 1)求证: cf=be ;( 2)连 ao,就: ao 平分 bac ; oa 平分 eof,你认为正确选项(填 或 )并证明你的结论20如图,在 abc 中, de bc , fb、fc 分别平分 acb , ab=18 , ac=16 ,就 ade 的周长为21( 2021.眉山)关于x 的不等式3x a0,只有两个正整数解,就a 的取值范畴是 22三角形中已知两边的长分别

5、为5a 和 3a( a 0),就第三边上中线长度x 取值范畴是()a 2a x 8ab x 4ac a x4ad 8a x 2a23(2007 .呼和浩特)某车间有3 个小组方案在10 天内生产500 件产品(每天每个小组生产量相同),按原先的生产速度,不能完成任务,假如每个小组每天比原先多生产1 件产品,就能提前完成任务,每个小组原先每天生产多少件产品?(结果取整数)24如图,已知ab=ad , ac=ae , bad= cae 求证: e= c25( 2021.济宁)如图,四边形abcd 中, ab=ac=ad,如 cad=76 °,就 cbd= 度26已知方程组和方程组有相同的

6、解,求a、b 的值27如图,已知 abc 和ade 都是等腰直角三角形,点m 为 ec 的中点求证: bmd 为等腰直角三角形28解方程组29假如是方程组的解,就m+n= 30如图, 8 块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?北大附中七年级(下)期末数学试卷参考答案与试题解析一、挑选题(本大题共8 个小题,每道题3 分,共 24 分)1( 3 分)如图,直线ab , cd 相交于点 o, eoab 于点 o,就图中 1 与 2 的关系是()a 相 等b 互余c 互补d 没有关系考点 : 余角和补角;垂线;分析:依据余角、补角的定义运算解答:解:由于eo ab ,

7、coa+ aoe+ eod=180 °,所以 1+2=90 °应选 b 点评:主要考查了余角的概念互为余角的两角的和为90°解此题的关键是能精确的从图中找出这两个角之间的数量关系,从而做出判定2( 3 分)以下坐标中表示的点位于其次象限的是()a ( 0, 1)b ( 3, 2)c ( 2, 1)d ( 2, 3)考点 : 点的坐标;分析:依据坐标系中各个象限内点的坐标的符号即可判定解答:解:其次象限内的点横坐标小于0,纵坐标大于0满意条件的只有(2, 1)应选 c点评:此题考查了各象限内点的坐标的符号特点以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个

8、象限的符号特点分别是:第一象限( +,+);其次象限 (, +);第三象限(, );第四象限( +,)3( 3 分)已知二元一次方程组,就 x+y 等于()a 2b 3c 1d 5考点 : 解二元一次方程组;专题 : 运算题;分析: + 得出 3x+3y=15 ,方程两边都除以3 即可求出答案解答:解:, + 得: 3x+3y=15 , x+y=5 ,应选 d点评:此题考查明白二元一次方程的应用,挑选适当的方法求出答案是解此题的关键4( 3 分)已知以下各组数据,可以构成等腰三角形的是()a 1, 2, 1b 2, 2,1c 1, 3,1d 2, 2, 5考点 : 等腰三角形的判定;三角形三边

9、关系;专题 : 推理填空题;分析:依据三角形的三边关系对以下选项进行一一分析、判定解答:解: a、 1+1=2 ,本组数据不行以构成等腰三角形;故本选项错误;b 、 2 2 1 2+2,本组数据可以构成等腰三角形;故本选项正确;c、 1+1 3,本组数据不行以构成等腰三角形;故本选项错误;d 、 2+2 5,本组数据不行以构成等腰三角形;故本选项错误; 应选 b 点评:此题考查了等腰三角形的性质和三角形的三边关系定理,三角形两边之和大于第三边,三角形两边之差小于第三边5( 3 分)不等式2x 50 的正整数解有()个a 0b 1c 2d 3考点 : 一元一次不等式的整数解;分析:第一解不等式,

10、然后确定不等式解集中的正整数解即可解答:解: 2x 50移项得: 2x5 x就正整数解是:1 和 2应选 c点评:此题考查了不等式的正整数解,关键是解不等式6( 3 分)全等三角形是()a 面 积相等的三角形c 周 长相等的三角形b 角相等的三角形d 能够完全重合的三角形考点 : 全等三角形的性质;分析:依据全等三角形的性质分别判定各选项,即可得解解答:解: a、面积相等的三角形不肯定全等,故本选项错误;b 、角相等的三角形可能是全等也可能是相像;故本选项错误;c、周长相等的三角形不肯定全等;如边长为6、6、8 和边长为 5、6、9 的三角形周长相等,但并不全等;故本选项错误;d 、能够完全重

11、合的三角形肯定是全等三角形;故本选项正确;应选 d点评:此题考查了全等三角形的性质,解题的关键是娴熟把握全等三角形的定义和性质7( 3 分)如 3xn 1 axn+1=12xn,就 a 与 n 的值()a a=3, n=5b a=4, n=5c a=2 ,n=3d a=4, n=4考点 : 因式分解的应用;分析:先提取公因式xn1,再进行二次因式分解,即可求出a 与 n 的值解答:解: 3xn 1axn+1n,=12x3xn+1nn 1ax+12x,n 12=x( ax+12x 3)n 1=x( ax 1)( x+3 ) a=4, n=4 应选 d点评:此题考查了提公因式法与公式法分解因式,留

12、意提取公因式后仍能连续利用完全平方公式进行二次因式分解,字母指数简洁出错,运算时需要认真当心8( 3 分)如图,四边形abcd中, ab=bd=da=ac,就四边形abcd中,最大的内角的度数是()a 90°b 120°c 135°d 150°考点 : 三角形内角和定理;等腰三角形的性质;等边三角形的判定与性质;分析:先设 cad=x ,得到 bac=60 ° x, acb=60 °+x, acd=90 °x ,求和即可得到答案解答:解:设 cad=x , ab=bd=da, abd 是等边三角形, abd= adb= ba

13、d=60 °, bac=60 ° x , ab=da=ac, abc= acb=180 °( 60°x ) =60 °+x, acd= adc=(180° x ) =90°x , bcd=60 °+x+90°x=150 ° cbd+ cdb=180 ° 150°=30 °,在四边形abcd中, bcd cba , bcd bad , bcd adc ,即: bcd 是最大角,等于150°应选 d点评:此题主要考查了等边三角形的性质和判定,等腰三角形的性质,

14、 三角形的内角和定理等学问点,设 cad=x ,用 x 表示其余角并利用所学的学问得到关系式是解此题的关键二、填空题9( 3 分)如图,已知直线l1 l2, 1=40°,那么 2=140度考点 : 平行线的性质;专题 : 运算题;分析:依据两直线平行,同位角相等求出3 的度数,再依据邻补角定义即可求出2 的度数解答:解:如图,l 1 l 2, 1=40 °, 3= 1=40°, 2=180° 3=180 ° 40°=140°故答案为: 140点评:此题主要考查平行线的性质和邻补角的定义,娴熟把握性质和概念是解题的关键10(

15、3 分)方程3x+4y=7 的非负整数解为考点 : 解二元一次方程;分析:第一用其中的一个未知数表示另一个未知数,然后依据x ,y 都是非负整数进行分析求解解答:解: 3x+4y=7 ,移项化简得:x=,依据题意, y 只可取 1,此时对应的x 为 1故非负整数解为:故答案为:点评:此题考查明白二元一次方程,难度不大,关键是先将方程做适当变形,确定其中一个未知数的适合条件的全部非负整数值,再求出另一个未知数的值11(3 分)如 a ( m,n)在第三象限,就b ( 1m , 3n 5)在第四象限考点 : 点的坐标;专题 : 运算题;分析:依据点在第三象限,可知m、n 的符号,即m 0, n0,

16、就 m 1 0, n+2 0,即可确定q 在其次象限解答:解:点a ( m, n)在第三象限, m 0, n 0, 1 m 0, 3n 5 0,点 b (1 m, 3n5)在第四象限 故答案为:四点评:此题主要考查了点的坐标,解决此题解决的关键是记住各象限内点的坐标的符号,此题仍涉及到解不等式的问题,是中考的常考点12( 3 分)自钝角的顶点引角的一边的垂线,把这个钝角分成两个角的度数之比是3:1,就这个钝角的度数是 120度考点 : 角的运算;专题 : 运算题;分析:依据题意可得出这个钝角被分成的一个是直角另一个是锐角,由两个角的度数之比是3: 1,可得出这个锐角为 30 度,从而得出这个钝

17、角的度数解答:解:设被分成的这个锐角为x °,这直角为3x 度,就3x=90 , 解得 x=30,这个钝角的度数是4x=4×30=120故答案为: 120 度点评:此题考查了角的运算,依据题意可得出被分成的一个是直角另一个是锐角,是解此题的关键13( 3 分)甲数的2 倍比乙数大30,乙数的 3 倍比甲数的4 倍少 20,求甲、乙两数,如设甲、乙两数分别为x、y ,就可得方程组考点 : 由实际问题抽象出二元一次方程组;分析:题中有两个等量关系:甲数×2乙数 =30,乙数 ×3+20= 甲数 ×4 倍,据此列出方程组解答:解:设甲、乙两数分别为x

18、 、y ,由题意,有故答案为点评:此题考查依据实际问题抽象出方程组:依据实际问题中的条件列方程组时,要留意抓住题目中的一些关键性词语,找出等量关系,列出方程组14( 3 分)如图,已知ab de ,ab=de , af=dc ,在图中有3对全等三角形考点 : 全等三角形的判定;平行线的性质;分析:第一依据ab de 可得 a= d ,再有条件ab=de , af=dc ,可证出 abf dec ,然后再证明 abc def ,依据全等三角形的性质可得bca= efc, ef=cb ,进而可证明 efc bcf 解答:解: ab de, a= d,在 abf 和 dec 中, abf dec ,

19、 af=cd , ac=df ,又有 a= d, ab=ed , abc def , bca= efc, ef=cb ,又 fc=fc, efc bcf ,有 3 对全等的三角形故答案为: 3点评:此题主要考查了平行线的性质,全等三角形的判定及性质,关键是熟记判定三角形全等的方法:sss,aas ,sas, asa 15( 3 分)如等腰三角形的周长为12,就腰长a 的取值范畴是3a 6考点 : 等腰三角形的性质;三角形三边关系;专题 : 应用题;分析:设等腰三角形的腰长为a,就其底边长为:122a,依据三角形三边关系列不等式,求解即可 解答:解:设等腰三角形的腰长为a,就其底边长为:12 2

20、a 12 2aa a 122a+a, 3 a 6故答案为3 a 6点评:此题主要考查了等腰三角形的性质及三角形三边关系的综合运用,难度适中16( 3 分)等腰三角形一个角为45°,就此等腰三角形顶角为90°或 45° 考点 : 等腰三角形的性质;分析:通过 45°为顶角或为底角两种情形进行分析,依据三角形内角和定理即可推出结果解答:解:如顶角 =45 °,就底角 =( 180° 45°)÷2=62.5 °,如底角 =45°,就顶角 =180° 45° 45°=90

21、°故答案为90°或 45°点评:此题主要考查等腰三角形的性质定理,三角形内角和定理,关键在于正确地进行分情形争论,认真地进行运算三、解答题17解不等式及不等式组( 1) 2x+1 3( 2)考点 : 解一元一次不等式组;解一元一次不等式;专题 : 探究型;分析:( 1)先移项、合并同类项、化系数为1 即可求出x 的取值范畴;( 2)先把不等式组中的不等式去分母,再求出各不等式的解集,进而可得出其公共解集解答:解:( 1)移项得, 2x 3 1,合并同类项得,2x 2,系数化为1 得, x 1;( 2)原不等式组可化为,由 得, x 7;由 得, x 3故此不等式组

22、的解集为:3x7点评:此题考查的是解一元一次不等式组及解一元一次不等式,熟知解一元一次不等式组的方法是解答此题的关键18解不等式 1,并把解集在数轴上表示出来考点 : 解一元一次不等式;在数轴上表示不等式的解集;分析:依据不等式的性质:先去分母,然后移项,再合并同类项最终系数化1 即可求得不等式的解集解答:解:去分母得:2( x 3) 10 5(3 x ) 去括号,移项得,2x+5x 6+10+15 ,合并同类项得,7x 31,两边同时出以7 得, x 不等式的解集为x,解集在数轴上表示如下:点评: 此题考查明白简洁不等式的才能,解答这类题同学往往在解题时不留意移项要转变符号这一点而出错,解不

23、等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向转变19如图,在 abc 的 ab 、ac 边的外侧作等边ace 和等边 abf ,连接 be 、cf 相交于点o,( 1)求证: cf=be ;( 2)连 ao,就: ao 平分 bac ; oa 平分 eof,你认为正确选项(填 或 )并证明你的结论考点 : 全等三角形的判定与性质;等边三角形的性质;专题 : 证明题;分析:( 1)依据等边三角形的性质得到ab=af ,ac=ae , fab= ea

24、c=60 °,就 fac= bae ,易证得 abe afc ,即可得到结论;( 2)由( 1)得 afo= abo ,依据四点共圆的性质和判定得到四点a、o、b、f 共圆, aof= abf=60 °, aoe=60 °,得到 oa 平分 eof,易得 nao mao 解答:( 1)证明:abf 和 ace 是等边三角形, ab=af , ac=ae , fab= eac=60 °, fab+ bac= eac+ bac ,即 fac= bae ,在 abe 与 afc 中,ab=af bae=fac ae=ac abe afc (sas), be=f

25、c ;( 2)解:连接ao ,如下列图, abe afc , afo= abo ,四点 a 、o、b 、f 共圆, aof= abf=60 °, aoe=60 °, oa 平分 eof, afo aeo , nao mao ,所以 不正确 故答案为 点评:此题考查了全等三角形的判定与性质:假如两边对应相等,且它们的夹角相等,那么这两个三角形全等;全等三角形的对应边相等,对应角相等也考查了等边三角形的性质以及四点共圆的性质和判定20如图,在 abc 中, de bc , fb、fc 分别平分 acb , ab=18 , ac=16 ,就 ade 的周长为34考点 : 等腰三角

26、形的判定与性质;角平分线的定义;平行线的性质;分析:先依据平行线及角平分线的性质求出1= 3, 4= 6,依据等边对等角可知bd=df ,fe=ce ,进而可求出答案解答:解: bf、cf 分别是 abc 、 acb 的平分线, 1= 2, 4= 5, de bc , 2= 3, 5= 6, 1= 3, 4= 6, bd=df , ce=fe , ade 的周长 =( ad+df )+( ae+fe )=( ad+bd )+( ae+ce ) =ab+ac=18+16=34故答案为: 34点评:此题主要考查了等腰三角形的判定与性质,平行线的性质及角平分线的定义等学问,利用已知得出bd=df ,

27、fe=ce 是解题关键21( 2021.眉山)关于x 的不等式3x a0,只有两个正整数解,就a 的取值范畴是6a9考点 : 一元一次不等式的整数解;专题 : 运算题;分析:解不等式得x ,由于只有两个正整数解,即1, 2,故可判定的取值范畴,求出a 的职权范畴解答:解:原不等式解得x ,解集中只有两个正整数解,就这两个正整数解是1, 2, 2 3, 解得 6a9故答案为: 6a 9点评:此题考查了一元一次不等式的整数解正确解不等式,求出正整数是解答此题的关键解不等式应依据不等式的基本性质22三角形中已知两边的长分别为5a 和 3a( a 0),就第三边上中线长度x 取值范畴是()a 2a x

28、 8ab x 4ac a x4ad 8a x 2a考点 : 全等三角形的判定与性质;三角形三边关系;分析:设 ab=5a , ac=3a 延长 ad 到 e,使 de=ad ,连接 be,在 abe 中,利用三角形的三边关系定理即可求解解答:解:设 ab=5a , ac=3a 延长 ad 到 e,使 de=ad ,连接 be就 be=ac=3a 在 abe 中, 5a 3a ae 5a+3a即 2a ae 8a,即 2a 2ad 8a a x 4a 应选 c点评:此题考查了三角形的三边关系定理,正确作出帮助线是关键23(2007 .呼和浩特)某车间有3 个小组方案在10 天内生产500 件产品

29、(每天每个小组生产量相同),按原先的生产速度,不能完成任务,假如每个小组每天比原先多生产1 件产品,就能提前完成任务,每个小组原先每天生产多少件产品?(结果取整数)考点 : 一元一次不等式组的应用;专题 : 应用题;分析:第一设小组原先生产x 件产品,依据 “不能完成任务 ”提“前完成任务”列出不等式组,解不等式组,依据 x 是整数可得出x 的值解答:解:设每个小组原先每天生产x 件产品,依据题意可得,解得:, x 的值应是整数,x=16 答:每个小组原先每天生产16 件产品点评:此题考查一元一次不等式组的应用,将现实生活中的大事与数学思想联系起来,读懂题列出不等式关系式即可求解精确的解不等式

30、是需要把握的基本运算才能24如图,已知ab=ad , ac=ae , bad= cae 求证: e= c考点 : 全等三角形的判定与性质;专题 : 证明题;分析:先通过 bad= cae 得出 bac= dae ,从而证明 abc dae ,得到 e= c解答:证明: bad= cae , bad+ dac= cae+ dac 即 bac= dae ,又 ab=ad ,ac=ae , abc dae ( sas) e= c点评:考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:aas 、sss、 sas、 ssa、 hl 留意: aaa 、ssa 不能判定两个三角形全

31、等,判定两个三角形全等时,必需有边的参加,如有两边一角对应相等时,角必需是两边的夹角25( 2021.济宁)如图,四边形abcd 中, ab=ac=ad,如 cad=76 °,就 cbd=38度考点 : 圆内接四边形的性质;等腰三角形的性质;圆周角定理;确定圆的条件;分析:由已知我们可以将点b ,c,d 可以看成是以点a 为圆心, ab 为半径的圆上的三个点,从而依据同弧所对的圆周角等于圆心角的一半求得即可解答:解: ab=ac=ad,点 b ,c,d 可以看成是以点a 为圆心, ab 为半径的圆上的三个点, cbd 是弧 cd 对的圆周角,cad 是弧 cd 对的圆心角; cad=

32、76 °, cbd= cad=×76°=38°点评:此题利用了同弧对的圆周角是圆心角的一半的性质求解26已知方程组和方程组有相同的解,求a、b 的值考点 : 二元一次方程组的解;专题 : 运算题;分析:先把两个不含a、b 的方程重新组合,得到一个二元一次方程组,利用加减消元法求出x、y 的值,然后代入另外两个方程得到关于a、b 的二元一次方程组,求解即可解答:解:依据题意,方程组重新组合得, + 得, 5x=15 , 解得 x=3 ,把 x=3 代入 得, 2×3 y=7 ,解得 y= 1,方程组的解是,代入另两个方程得, 代入 得, 3( 3a1) =a, 解得 a=1,把 a=1 代入 得, b=3×1 1=2 ,方程组的解是, a、b 的值分别是1, 2故答案为: 1, 2点评:此题考查了二元一次方程组的解,依据同解方程,重新组合得到只含有未知数x、y 的二元一次方程组并求解是解题的关键27如图,已知 abc 和ade 都是等腰直角三角形,点m 为 ec 的中点求证: bmd 为等腰直角三角形考点 : 全等三角形的判定与性质;等腰直角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论