

下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、最新资料推荐最新 fit 品资料整理推荐.更新于二 O二-年一月-0 2021 年 1月 1 口星期五 20:25:06中央广播电视大学电子信息技术专业(专科)高等数学(2)课程考核说明(审定稿)I 课程考核性质高等数学(2)是中央广播电视大学电子信息技术专业(专科)的一门统设必修基 础课.该课程主要山空间解析儿何与向量代数、多元函数微分学、重积分、第二类 曲线积分和傅里叶级数等教学内容组成,实行全国统一考核,考核合格标准应达到 普通高等专科学校教育的要求II-有关说明与实施要求为使本课程的要求在考核命题中得到贯彻落实,现对有关问题作如下说明:1.考核对象:广播电视大学高等专科电子信息技术专业
2、学生.2.考核方式:本课程釆用形成性考核和期末考试相结合的方式,满分为 100分: 期末考试成绩满分为 100分,占考核成绩的 80%;形成性考核(平时作业)的成绩 占考核成绩的 20%.期末考试的具体要求按照本说明中的考核内容与考核要求执行形成性考核的内容及成绩的评定按中央广播电视大学数学教研室编写的电子 信息技术专业高等数学(2)四次作业中的规定执行,山辅导教师按完成作业的 质量评分.3. 命题依据:本课程使用的教学大纲是中央广播电视大学高等专科高等数学 课程教学大纲使用的教材为分别是高等数学(下册)一一多元函数微积分 和高等数学(上册)中第七章无穷级数中 7, 8, 9 节(柳重堪教授主
3、编,中央 电大出版社出版,2000年 1月).考试说明是考试命题的依据.4. 考试要求:本说明对各章内容规定了考核知识点和考核要求,有关定义、 定理、性质、特征等概念的内容按“知道、了解和理解”三个层次要求;有关计算、 解法、公式和法则等方法的内容按“会、掌握、熟练掌握”三个层次要求.其中“理 解”和“熟练掌握”是较高层次,“知道”和“会”是较低层次.5. 命题原则:在教学大纲和考核说明所规定内容和要求范围内命题,注意知 识点的覆盖面,在此基础上适当突出重点.试题的难易程度和题量要适宜,其难易 度分为易、中等、较难三个等级,其大致的比例为 4:4:2.6. 试题类型及结构:本课程的考试题型分为
4、四种:填空题、单项选择题、计 算题和应用题,相应的分数比例大致为 21:18:50:11 7. 考试形式:本课程期末考试的形式采用闭卷笔试,考试时间为 120分钟.最新资料推荐最新 fit 品资料整理推荐.更新于二 O二-年一月-0 2021 年 1月 1 口星期五 20:25:06III考核内容与考核要求第 9章空间解析儿何与向量代数考核知识点:1.空间直角坐标:空间直角坐标系概念,两点间距离公式.2向量代数:向量概念,向量的模,单位向量,向量的坐标,方向余弦,向 量的加减法,数乘向量,向量的数量积、向量积,两向量的夹角,平行、垂直的条 件.3.空间平面:平面的点法式方程,一般方程,点到平面
5、的距离.4-空间直线:直线的标准方程,参数方程,一般方程.平面与直线的位置关 系的讨论.5.空间曲面与曲线:球面、椭球面,旋转抛物面,母线平行于坐标轴的柱面、 以坐标轴为轴的圆锥面,空间曲线的参数方程.考核要求:1.空间直角坐标了解空间直角坐标系概念,掌握两点间的距离公式.2向量代数了解向量、向量的模、单位向量.方向余弦等概念,掌握它们的坐标表示. 掌握向量的加减法、数乘向量及它们的坐标表示.了解向量的数量积和向量积概念,掌握它们的坐标表示,熟练掌握向量平行和 垂直的判别方法.3.空间平面熟练掌握平面的点法式方程,掌握平面的一般方程,会求点到平面的距离.4.空间直线熟练掌握空间直线的标准方程,
6、掌握参数方程和一般方程,会进行这三种方程 间的互化.掌握用方向向量和法向量讨论平面之间、直线之间以及平面与直线之间的位置 关系(平行.垂直.重合等).5. 空间曲面与曲线知道球面、椭球面,旋转抛物面,母线平行于坐标轴的柱面、以坐标轴为轴的 圆锥面的方程及图形;知道空间曲线的参数方程.第 10章多元函数微分学考核知识点:1. 多元函数:多元函数定义,二元函数的儿何意义.2. 偏导数与全微分: 偏导数定义和求法, 二阶偏导数, 全微分, 复合函数的 (一 阶)偏导数,隐函数的(一阶)偏导数.3.偏导数应用:空间曲线的切线与法平面,曲面的切平面与法线.最新资料推荐最新 fit 品资料整理推荐.更新于
7、二 O二-年一月-0 2021 年 1月 1 口星期五 20:25:064.多元函数极值:二元函数极值的概念,极值点存在的必要条件,拉格朗日 乘数法.考核要求:1.多元函数知道二元函数的定义和儿何意义,会求二元函数的定义域.2.偏导数与全微分了解偏导数的概念,熟练掌握给定的具体函数的一阶、二阶偏导数的计算方法.掌握复合函数(包括含有函数符号的,如Z=阶偏导数的计算方法,会计算隐函数一阶偏导数.掌握全微分的求法.3.偏导数应用会求曲线(参数方程表示)的切线与法平面方程,曲面的切平面与法线的方程.4.多元函数极值:了解二元函数极值的概念,知道极值点存在的必要条件,掌握用拉格朗日乘数 法求较简单的极
8、值应用问题.第 11章重积分考核知识点:1.重积分概念:二重积分的定义,儿何意义、性质.2.二重积分的计算:直角坐标系下二重积分的计算方法、极坐标系下二重积 分的计算方法.3.二重积分的应用:求立体的体积.考核要求:1.重积分知道二重积分的定义,了解二重积分的儿何意义和性质.2.二重积分的计算熟练掌握直角坐标系下二重积分的计算方法.会在直角坐标系下交换积分次 序.掌握在极坐标系下二重积分的计算方法.3.二重积分的应用掌握曲顶柱体的体积的求法,会求山简单曲面用成的空间立体的体积.第 12章第二类曲线积分考核知识点:1.曲线积分概念:第二类曲线积分的概念、性质.2.曲线积分讣算方法:把曲线积分化为
9、定积分再计算.最新 fit 品资料整理推荐.更新于二 O二-年一月-0 2021 年 1月 1 口星期五 20:25:06址新资料推荐3.格林公式:用格林公式将曲线积分化为二重积分讣算.4.曲线积分与路径无关的条件.考核要求:1.曲线积分理解第二类曲线积分的概念和性质(线性性质、对积分路径的可加性).2.第二类曲线积分的计算方法掌握把曲线积分化为定积分的计算方法;掌握用格林公式将曲线积分化为二重积分的方法;3.曲线积分与路径无关的条件理解曲线积分与路径无关的条件.第 7章 无穷级数(7, 8, 9节傅里叶级数部分)考核知识点:1. 傅里叶级数:傅里叶级数的概念、傅里叶系数公式,周期为 2兀函数
10、或定义 在-兀刃上的函数的傅里叶级数,狄利克雷定理.2.正弦级数或余弦级数:定义在0,刃上的函数展为正弦级数或余弦级数.考核要求:1.傅里叶级数熟练掌握周期为 2兀或定义在-不刃上的函数的傅里叶级数展开,并会利用狄 利克雳定理讨论它的收敛性.2.正弦级数或余弦级数掌握定义在0,刃上的函数展开成正弦级数或余弦级数,并会利用狄利克雷定理 讨论它的收敛性.IV.试题类型及规范解答举例一、填空题1.设 z = d + y)x,则竺=_ .勿在横线上填写答案“ x(l + y)“”.(容易题)2.当常数 k 二_ 时,积分曲线fkxydx+x2dy与路径无关.L在横线上填写答案“2”(中等题)最新资料推
11、荐最新 fit 品资料整理推荐.更新于二 O二-年一月-0 2021 年 1月 1 口星期五 20:25:06二、单项选择题1.函数丁心芝亠的定义域为().1A. x2+y2C.1 x2+y24D. 1 = (x,y)|l x2+ y24.DA.C.(A)正确,将 A填入题中括号内.(较难题)三、计算题1. 求半行于平面x + y-2z- =0和 x + 2y-z + l = 0,且通过点(-1, 2,1)的直 线方程.解:因为所求直线的方向向量为:i J kI= zijXM2= 11 一 2=(3, 1,1)1 2 -1所以直线方程为:=(容易题)3-112.计算 JJX + yjdxdy,
12、其中 D 是由 y = x2与屮“围成的区域.D解:因为积分区域 D可以由 0 x 1 ,X2 yV7确定.所以JJ( + y)血 dy = ch j (x2+ 刃 dyDX四. 应用题求抛物线/=4x到直线 x-y + 4 = 0之间的最短距离.7410%140(中等题)+二 52 2最新资料推荐最新 fit 品资料整理推荐.更新于二 O二-年一月-0 2021 年 1月 1 口星期五 20:25:06解:设抛物线上点(兀刃到直线 x-y + 4 = 0的距离为:IV.样卷一、填空题(本题共21分,每小题3分)1. 平面 2y-3 = 0平行于_坐标平面.2. 函数z =1-+ arcsin-的定义域为23.设函数 z = xy,则乞 =_.勿(2.D4. 设函数 z = et:+y2,则衣二_ .5. 在直角坐标系下将二重积分化为累次积分,则 JJ/(x,y)dvdyD兀 一 y + 4JF+(_1)2即d2=(-y-y + O22条件函数为:y2=4x令 F(x. ”2) =厂+ A(y2- 4x)dF=x-y+4-42=0 ox解方程组=_x + y _ 4 +2Ay= 0dy因实际问题确有最小值,所以抛物线到直线的最短距离为:(较难题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新解读《GB-T 31155-2014太阳能资源等级 总辐射》
- 食堂厨师服务合同范本
- 租赁私人车辆合同范本
- 土方挖运输合同范本
- 房屋购销合同范本
- 租房合同范本怎么制作
- 工地包工合同范本
- 帐篷营地营运合同范本
- 喷粉合同范本
- 店铺共享出租合同范本
- 露天矿山安全培训课件
- 2025-2030全球及中国工程CAD软件行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 塔吊前臂临近高压线处理方案
- 2025浙江1月卷读后续写及满分语料10类40句 (真假小偷) 解析版
- 构音训练测试题及答案
- 消防设施操作员自测试题及答案
- 《消防联动控制系统》课件
- 临床患者走失事件的应急预案
- 实验室用电安全
- 私人二手摩托车转让合同范本
- 全员应急教育与培训
评论
0/150
提交评论