


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二十八届(2012)全国直升机年会论文燃气轮机涡轮转子叶片设计及动力学分析潘永生1杨库2李成2(1.海军驻哈尔滨地区军事代表室;2.中航工业哈飞,哈尔滨150066)摘 要:燃气轮机涡轮转子叶片是燃气轮机的主要零部件之一,它的工作状态、工作环境、结构形式十分 复杂。它的可靠性直接影响燃气轮机能否正常工作。有关统计资料指岀,叶片的损坏事故中,绝大部分是 由于振动引起的。因而,长期以来,叶片的振动一直是燃气轮机的一个普遍存在的严重问题,必须予以充 分重视。由于外载荷、几何尺寸、材料性能等方面存在着不确定因素使振动具有随机性,从而影响叶片的 可靠度。针对叶片工作中诸多参数的不确定性,如何进行动力学
2、分析是结构设计和实际应用中一个十分重要的研究课题。关键词:燃气轮机;叶片;振动;动力学1引言燃气轮机广泛应用于航空、航天、船舶和电力等对国家安全和国民经济起着重要作用的领域及行业,尤其是水面舰船和航空飞行器的重要动力设备,对作战载体的战斗力起着举足轻重的作用, 因此作战环境中燃气轮机的可靠性是保证战斗力的必要条件,而转子叶片是燃气轮机的关键零件, 涡轮转子叶片在高温条件下高速旋转,承受离心力、气动力等循环交变载荷与动载荷作用,它的工 作状态、工作环境、结构行为十分复杂,容易产生振动,统计资料表明,叶片的损坏事故中,绝大 部分是由于振动引起的。因而,长期以来,叶片的振动一直是燃气轮机的一个普遍而
3、又严重的问题, 必须重视。所以对燃气轮机结构进行动力学分析,是十分必要的。2燃气轮机涡轮转子叶片力学分析燃气轮机是一种连续回转的内燃、叶轮机械式的热机,主要由压气机、燃烧室和涡轮三大部分 构成。涡轮是受力最为复杂的部分。涡轮由转子和静子组成,转子是涡轮转动部分的总称,由涡轮盘、 涡轮轴、工作叶片(转子叶片)及联接零件等组成,参见图1。转子叶片是燃气轮机中受力、受热最严重的零件之一,是进行功能转换的重要零件。燃气轮机涡轮转子叶片由叶身、矩形缘板和燕尾形榫头三部分组成,见图2。叶身几何形状由叶背与叶盆表面上数据点的坐标,以流面形式给出。坐标系为发动机总体坐标系, x为转轴方向(向前),z轴沿径向通
4、过叶根截面重心,y轴沿周向,x y z组成右手系。图2 叶片图发动机工作时,燃气轮机涡轮转子叶片主要承受自身质量产生的离心力、气流的横向气体力、热负荷和振动负荷。本章将计算转子叶片的静强度可靠性。在计算涡轮转子叶片上的应力时,做如 下假设:把转子叶片看作根部完全固装的悬臂梁。忽略叶片承受各种负荷后产生的变形。转子叶片仅承受自身质量离心力和横向气体力,只计算由离心力产生的拉伸应力和弯曲应力, 以及由气体力引起的弯曲应力,不计叶片上的扭转应力、热应力和振动应力。设转子叶片各截面的扭转中心(刚心)、气体力压力中心与重心三者重合,则离心力和气体力均作用于重心,叶片受力变形的情况将大为简化。2.1叶片自
5、身质量产生的离心力由于发动机的转速很高,故叶片自身的质量离心力很大。例如一个质量0.3kg的转子叶片在最大转速(11150r/min)工作时产生的离心力达 7000多牛顿,为自重的 23000多倍。叶片在其自身离 心力的作用下,将产生很大的拉伸应力和弯曲应力,还能产生扭转应力。图3叶片微元体所产生的离心力2.1.1离心力作用下的拉伸应力如图3所示,在叶片上取一个高度为dZ的微元段,并在该微元段上取一个微元体dXdYdZ,令微元体的面积dXdYdA,则微元体的离心力 dP为:2dP =ZdAdZ式中:p 叶片材料的密度;3 转子旋转角速度;Z * 微元体重心到旋转轴 X的距离。注意到Z = Z
6、cos,则离心力dP沿Z轴方向的分量为:因此,截面积为 A(Z)的叶片微元段质量所产生的沿Z轴方向的离心力为:2 2dPZ = “ ZdZ dA 二 r,A(Z)ZdZA(Z) ZA(Z)Z轴方向的分量为:这样,就可求出转子叶片某一截面Z=Zj以上的叶片质量的离心力沿Zk2P,离二 Z X2A(Z)ZdZZi式中:Zk 叶尖处的Z坐标值;A(Z) 叶片横截面面积,是随 Z坐标变化的函数。则叶片某一截面Z =Zi上的离心拉伸应力为:Zk(1-1)z A(Z)ZdZA(Zi)对于等截面叶片,A(Z) =A(Zj)二常数,故式(3-1)变为1 2 2 2G,离二 2Zk - Zi( 1-2)由式(1
7、-2)可知,截面所在的坐标 乙越小,则该截面上的离心拉伸应力越大,叶根截面上的离心拉伸应力最大,而在叶尖处为零。2.1.2离心力弯矩由于转子叶片各截面重心的连线不与Z轴重合,所以叶片旋转时产生的离心力将引起离心弯矩。通常采用数值积分法计算离心力弯矩。如图4所示,将叶片分成n段共n+1个截面,假定叶片各截面的面积 A1和重心坐标 Xi、Y,乙为已知,则第i段叶片的离心力分量为:Zi Z图4离心力弯矩计算简图Pxi =0PYi = "VRmi 'sin <:' :c 2 : VYmi(1-3)Pzi = PAVjRmd COS© = P AVjZmi式中:
8、r 叶片材料的密度; 一一 旋转角速度;Vi 第i段叶片的体积;Rmi第i段叶片重心(坐标为Xmi、Ymi、Zmi )到旋转轴的距离。可近似地认为:1 、Vi =;(Ai+Ai)( ZiZi)21Xmi =:(XXi)12j(1-4)Ymi = (Yi+Yi)21Zmi (乙二 Z i )2叶片第j截面上的离心力弯矩应等于第1段到第j段叶片的离心力分量pYi、pZi对截面x、y轴的力矩的总和,即:jj(1-5)Mxj,离=吃 Pzi(Ymi-Yj)+5: Pyi(Zmi-Zj)jMyj,离Pzi(Xmi-Xj)i 二利用式(1-3 )、( 1-4 )、( 1-5)进行计算,就可得到叶片各截面上
9、的离心力弯矩。对于接近于等 截面的涡轮工作叶片,通常只需求叶根截面的弯矩,此时将整个叶身作为一段进行近似计算,而不 必分段计算。2.2叶片弯曲应力2.2.1气体力弯矩当气流流过叶栅通道时,气流的轴向和周向速度会发生变化,也就是说气流的动量发生变化, 说明气流受到了力的作用。图5流过平均半径处的气流情况如图5所示,根据动量定量,这两个轴向力之和应等于每秒钟内气流的动量变化量。在叶片平均半径处取宽为一个栅距,高为1单位长度的窗口,则流过该窗口的气流每秒钟内的动量变化为:PXi= (2 mC2amt2m 沃 1)c2am (°1mGamtlm 況 1)ciam式中:(1m、,2m、Gam、
10、C2am 一一进、出口截面处气流的密度和轴向速度。设进、出口截面处的栅距相等,即tfm “2m = tm 二 2- Zm: Q,则:2 二ZmQ(:"2m2am:?1mC21am式中:Zm 叶片的平均半径,Zm二r跟r尖2 ; Q 叶片数;tm均半径处的栅距。由叶栅进、出口截面处气流压差引起的轴向力为:Px2 =(P1mP2m)tm 仁三今(Rm-P2m)Q式中:P1m、P2m分别是叶栅进、出口截面平均半径处气流的静压。将(1-6)、( 1-7 )式,即得叶片给予流过窗口气流的轴向力为:2乙Q22 am根据作用力与反作用力定律,单位叶高上受到的气体力轴向分量为:Pxm2ZmQ : 1
11、 mC 1am " 2mC 2am P 1m P2m同理可得到单位叶高上受到的气体力周向分量为:P ym2ZmQ('1mC1amC1um?2mC2amC2um(1-6)平(1-7)(1-8)(1-9)(1-10)式中:C1um、c2um 叶栅进、出口截面平均半径处气流的周向速度。2.2.2叶片弯曲应力的计算作用在转子叶片j截面上的总弯矩,也称为合成弯矩,应等于作用在该截面上的气体力弯矩和 离心力弯矩的代数和,即:Mxj,合M yj,合=M为,气二 M yj,气Mxj,离Myj,离按式(1-11)求出对转子叶片某截面上X,Y轴的合成弯矩后,还不能立即计算弯曲应力。为X,Y轴通常
12、不是截面的主惯性轴。如图6所示,叶片截面与一个狭长的长方形截面相仿。这类截面的抗弯能力在各个方向是不一样的。通过截面重心,有一对惯性轴、,对于 轴的惯性距最小,对轴的惯性矩最大。弯曲应力时,总是对惯性主轴、而言的。因此,必须把对X,Y轴的合成弯矩 Mx合、换为对 ,轴的合成弯矩。(1-11)因计算M y合转图6叶片截面的主惯性轴图7合成弯矩的转换通过叶片截面重心的最小惯性轴近似地平行于叶弦,其正向指向叶片后缘,'轴与y轴的夹角为a。合成弯矩M x合、M y合在口,'轴上的投影之代数和, 即为M n合、M 合,转换公式为(参见图7):M “合=M x,合 cos a M y,合
13、sin aM 泠=M x,合 sin a + M y,合 cos a'(112)根据叠加定理,这三个点在 Mq合、M亡合作用下的弯曲应力计算式为:A,弯B,弯M ,合,合(1-13)式中:M &合A,B,C三点的坐标,必须带有正负号;J、J 叶片截面的主惯性矩。3燃气轮机涡轮转子叶片动力学分析3.1叶片的自振频率影响因素叶片的自振频率(固有频率)是叶片本身的固有特性,叶片尺寸已定,其自振频率便已确定, 但是随同叶片的旋转及所受温度环境和根部安装形式等不同影响,叶片的自振频率将有所改变。 3.1.1离心力场的影响涡轮的工作叶片处在高速旋转状态下工作,转动使叶片产生很大的质量离心力
14、。这个力通常以 一个拉力的方式作用在叶身上,迫使振动的叶片有恢复到原平衡位置趋势。这相当增强了叶片的弹 性恢复力,结果是叶片的各阶固有频率有所提高。因此,旋转着的叶片的固有频率随转速的增大而 增高。通常转动下的叶片的自振频率称为动频,以fD表示。不转动时叶片的自振频率称为静频,以f表示。3.1.2温度的影响涡轮叶片处于高温状态下工作,由于温度升高,材料的弹性模量E要下降,叶片的各阶频率都to会随E而改变。一般应用下式计算温度对频率的影响:(1-15)式中:ft 叶片高温下的自振频率;fto 片在常温下的自振频率;Et 高温下叶片材料的弹性模量;Eto 常温下叶片材料的弹性模量。涡轮叶片温度通常
15、使频率降低,而转速又使频率增高,有时两者升降率相差不多,使叶片的动 频没有多大变化。3.1.3 一般研究叶片的振动特性都认为叶片根部与轮盘的联结是绝对刚性固装的。但大多数叶片榫头与盘槽的配合是留有少量 间隙的,目的是为了消除工作时的热应力。并且叶片是弹性体,在两个零件的联结处也都有一定的 弹性。严格地说,这种联结结构不能看作固装形式。因为随转速增加,叶身的巨大离心力作用在榫 头上,结合面上产生巨大的压力,从而逐渐使叶片失去其在间隙内活动的可能,根部联结处的刚性 随转速的增高而加大。最终导致成 完全固装”条件。图8中给出了具有纵树形榫头联结的涡轮叶片的振动频率随侧向力P的变化曲线。侧向力相当于叶
16、片旋转时,叶片离心力负荷加给榫头上的紧固力。可见,在低转速范围,紧固力随转速变化使 叶根刚性改变较大,振动频率增加较快。转速较高时,紧固力使叶根刚性改变较慢,振动频率变化 也较缓慢。就是说叶片在低转速下,振动频率随叶根部刚性变化的影响较大,而高转速时则影响较 小。/i实际上,当转速达到最大值的某一百分比时,就可以看成完全固装”了。3.2叶片动力学分析及算例本节给出动力涡轮级数为4,研究的转子叶片为二级转子叶片,其前后的每级静叶片数都为68,因此尾流激振力的激振频率中,构造系数K=68或K=136。考虑四根支柱,K=4。本文利用ANSYS软件对叶片固有频率进行分析。得出固有频率均值。由于涡轮转子
17、结构是由具有旋转周期对称性的N个重复扇区组成的。即绕其转轴转动a 一 2/N(N为叶片数,本例中为 71)角度后,结构的几何形状和转动前完全一样。根据叶片与轮 盘结构的旋转对称特性,可把有限元分析模型的区域局限在一个基本重复扇区之内,即仅研究一个 叶片,使求解规模大大降低。叶片有15°勺安装角,叶尖截面相对叶根截面的自然扭转角为15°叶身高120mm,叶片采用GH37高温镍基合金材料。其密度为:=8400 kg/m3,弹性模量随温度变化曲线见图9,常温下弹性模量为 Et° =2.2 10 MPa,叶片工作时平均温度为 773C,在1.0工况下 的工作转速为3270
18、r/min。材料在800 C下的弹性模量为 Et =1.67 10 MPa。泊松比' =0.3。线 膨胀系数变化曲线见图10。TEMP图9弹性模量随温度变化曲线,“ TREF1. B札1_£3_/1 P5J.1.44./1.23.1筑/115*ZOD4DD6DQBDO1OQC)10D3 DO5Q0?0O9*00TEMP图10线膨胀系数随温度变化曲线3.2.1网格划分采用Solid95 3维20节点实体单元。该元素能够用于不规则形状,而且不会在精度上有任何损 失。该元素由20个节点定义,每个节点3个自由度:x,y,z方向。有限元网格如图11所示。图11有限元网格划分3.2.2荷
19、载与边界条件榫齿承力面所有节点均为固定边界条件;温度为均匀分布773 C;荷载为旋转离心力,最大转速为 3270r/min。3.2.3固有频率和模态分析在ANSYS中使用Block Lanczos法,分别对叶片进行不考虑离心力及温度影响的静频和考虑离心力及温度影响的动频的计算。提取前3阶模态,模态形状如图1217所示,110阶静频和动频的比较如表1.1。通过比较验证了上面提到的转速和温度对固有频率的影响。STE>*150B -1.FPEQ«32.14S xa=.d絆5TIH-1E U3 -1FEJ-5B-5fl5M42亡"图12叶片静频1阶振动模态图13叶片动频1阶振
20、动模态zi5Pu.cEMnn图14叶片静频2阶振动模态图15叶片动频2阶振动模态:I5P-FbCE3Ein,3IIF-1SCB -3FRZ>12S.1333I52LA2EVEUI *TE?-LSUB »3TPES-L35.443MS -4.7C3图16叶片静频3阶振动模态图17叶片动频3阶振动模态表1.1 静频和动频对比表Hz阶数12345静频32.14857.882123.19165.85250.10动频58.59572.119125.44184.40230.29阶数678910静频276.78344.34394.78468.36602.25动频260.09343.38399
21、.16505.14553.394 总结本章对燃气轮机动力涡轮叶片影响其振动特性的主要因素进行了分析。利用 ANSYS 软件,采用 Block Lanczos 法,分别对叶片进行不考虑离心力及温度影响的静频和考虑离心力及温度影响的静频、 动频的计算,为一下步的燃气轮机动力涡轮叶片的结构设计和可靠性分析提供了很好的理论和试验 依据。Design and dynamics analysis of the gas turbine rotor blade1 2 2Pan yong-sheng Yang ku Li cheng(1.Military Representative Office of the Navy Aviation Department for the Headquarters of the PLA General Staff in HarbinRegion, 2.AVIC HARBIN AIRCRAFT INDUSTRY GROUP CO., LTD., Harbin,150066)Abstract: The rotor blade is one of the main components of a gas turbine, its working state, working e
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电梯产品买卖合同
- H-Gly-OBzl-TosOH-13C2-15N-生命科学试剂-MCE
- EG00229-生命科学试剂-MCE
- 禁毒知识培训提纲课件
- 禁毒知识培训宣传课件
- 四川省眉山一中2025年高三数学第一学期期末预测试题
- 食物计算问题
- 苏幕遮课件教学课件
- 2025年铜陵枞阳国有资本投资控股集团有限公司公开招聘工作人员8名备考练习试题及答案解析
- 2025云南昆明市官渡区北京八十学校招聘4人考试参考试题及答案解析
- 纪念抗美援朝队会课件
- 2025广东茂名市信宜市供销合作联社招聘基层供销社负责人2人笔试模拟试题及答案解析
- 成人反流误吸高危人群全身麻醉管理专家共识(2025版)解读
- 初二体育课程教学计划及实施
- 2025年山东省临沂市、枣庄市、聊城市、菏泽市、济宁市中考语文试题解读
- 2025年秋季学期第一次中层干部会议上校长讲话:凝心聚力明方向沉心落力干实事
- 医院患者身份识别核查流程规范
- 2025年北京市综合评标专家库专家考试历年参考题库含答案详解(5套)
- 2025年全国特种设备安全管理人员A证考试题库(含答案)
- 浙江省金华市婺城区2024-2025学年七年级上学期语文期中考试试卷(含答案)
- 2025年10月自考00227公司法真题及答案
评论
0/150
提交评论