版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、线性代数复习一:选择题1.如果111213212223313233aaaaaaaaa= m,则111213212223313233222222222aaaaaaaaa= ()a. 8mb. 2 m c. md. 6 m2.若 a,b 都是方阵,且|a|=2,|b|=-1,则 |a-1b|=()a. -2 b.2 c. 1/2d. 1/2 3.已知可逆方阵13712a则 a ()a.2713 b.2713c.3712d.37124.如果 n阶方阵 a 的行列式 |a| 0则下列正确的是()a. a o b. r(a) 0 c. r(a) 0 c. r(a) nd. r(a) 05.设 a b 均
2、为 n 阶矩阵则下列结论中正确的是()精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 2 页,共 7 页 - - - - - - - - -精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 2 页,共 7 页 - - - - - - - - -a. (a b)(a b) a2b2 b. (ab)kakbkc. |kab| k|a| |b| d. |(ab)k| |a|k|b|k6.设矩阵 a n n的秩 r(a) n则非齐次线性方程组ax b()a. 无解 b.可能有解c. 有唯一解d. 有无穷多个解7.设
3、a 为 n 阶方阵a 的秩r(a) r n那么在 a 的 n 个列向量中()a. 必有 r 个列向量线性无关b. 任意 r 个列向量线性无关c. 任意 r 个列向量都构成最大线性无关组d. 任何一个列向量都可以由其它r 个列向量线性表出8.已知矩阵4 4a的四个特征值为4,2, 3,1,则 a =()a.2 b.3 c.4 d.24 9. n 阶方阵 a 可对角化的充分必要条件是()a. a 有 n 个不同的特征值 b.a 为实对称矩阵c. a 有 n个不同的特征向量 d.a 有 n 个线性无关的特征向量10. n 阶对称矩阵a 为正定矩阵的充要条件是()a. a 的秩为 n b. |a| 0
4、 c. a 的特征值都不等于零 d.a 的特征值都大于零参考答案 : 1.d 2. a 3. d 4. c 5. d 6. c 7. a 8. d 9. d 10. d 1.行列式3462578yx中元素y的余子式和代数余子式值分别为()a. 2,-2b. 2,2 c. 2, 2d. -2, -22.设 a b 均为 n(n 2)阶方阵则下列成立是()a. |a+b| |a|+|b| b.ab bac. |ab| |ba|d. (a+b)1b1+a13.设 n 阶矩阵 a 满足 a22ae 则(a-2e )1()a. a b. 2 ac. a+2ed. a-2e4.矩阵111122223333
5、a的秩为()a.1 b.3 c.2 d.4 5.设 n 元齐次线性方程组ax o 的系数矩阵a 的秩为 r则方程组ax 0 的基础解系中向量个数为()a. r b. n- r c. nd. 不确定6.若线性方程组212321321xxxxxx无解则等于()a.2 b.1 c.0 d.17. n 阶实方阵a 的 n 个行向量构成一组标准正交向量组,则a 是()a. 对称矩阵 b.正交矩阵 c.反对称矩阵d.| a|= n 精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 3 页,共 7 页 - - - - - - - - -精品学习资料 可选择p d f
6、 - - - - - - - - - - - - - - 第 3 页,共 7 页 - - - - - - - - -8. n 阶矩阵 a 是可逆矩阵的充要条件是()a. a 的秩小于n b.a 的特征值至少有一个等于零c. a 的特征值都等于零 d.a 的特征值都不等于零9.设12是非齐次线性方程组ax=b 的任意 2 个解则下列结论错误的是()a.1+2是 ax =0 的一个解 b.121122 是 ax =b 的一个解c.12是 ax=0 的一个解 d. 212是 ax=b 的一个解10.设二次型的标准形为2221233fyyy ,则二次型的秩为()a.2 b.-1 c.1 d.3 参考答
7、案 : 1. d 2. c 3. a 4. a 5. b 6. a 7.b 8. d 9.a 10. d 1. 设000101abbad,则 a,b 取值为()a. a=0,b0b. a=b=0 c. a0,b=0 d. a0,b 0 2.若 a、b 为 n 阶方阵且 ab= o则下列正确的是()a. ba o b. |b| 0 或|a| 0c. bo 或 ao d. (a b)2a2b23.设a是 3 阶方阵,且 |a|2,则 |a1|等于()a.2 b.12c.2 d.124.设矩阵 a b c 满足 ab ac则 b c 成立的一个充分条件是()a. a 为方阵 b. a 为非零矩阵c.
8、 a 为可逆方阵d. a 为对角阵5.如果 n阶方阵 a o 且行列式 |a| 0则下列正确的是()a. 0r(a) r(a)7.已知方程组ax b 对应的齐次方程组为ax o, 则下列命题正确的是()a. 若 ax o 只有零解则 ax b 有无穷多个解b. 若 ax o 有非零解则 ax b 一定有无穷多个解c. 若 ax b 有无穷解则 ax o 一定有非零解d. 若 ax b 有无穷解则 ax o 一定只有零解8.已知矩阵10102010 xa的一个特征值是0则 x ()a.1 b.2 c.0 d.3 9.与100021012a相似的对角阵是()a.113 b.123c.113 d.1
9、1410.设 a 为 3阶方阵a 的特征值为103 则 a 是()a.正定 b.半正定 c.负定 d. 半负定参考答案 : 1. c 2. c 3. c 4. b 5. c 6. d 7. c 8. a 9. a 10.b 1.设 a b 都是 n 阶方阵k 是一个数则下列()是正确的。a. 若|a| 0则 a ob. |ka| |k| |a| c. |a b| |a| |b|d. |ab| |a| |b|精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 6 页,共 7 页 - - - - - - - - -精品学习资料 可选择p d f - - -
10、- - - - - - - - - - - 第 6 页,共 7 页 - - - - - - - - -2.设1234432110125116a则 4a41+3a42+2a43+a44()a.0 b.1 c.2 d.3 3.若 n 阶方阵 a 的行列式为a则 a 的伴随阵的行列式|a*| ()a.a b. an c.1ad. an14.设 a b c 都是 n 阶方阵且 c 可逆则下列命题中()是错误的。a. 若 ab c则 a 与 b 都可逆 b.若 ac bc则 a bc. 若 abco则 ao 或 bod. 若 ac b则 a 与 b 有相同的秩5.设 n 阶矩阵 a 满足 a3-a2+a
11、-e o则 a1()a. a2-a +e b. -(a+e) c. a2-a d. -(a2-a +e) 6.矩阵101012042214a的秩为()a.1 b.3 c.2 d.4 7.设 axb是一非齐次线性方程组12是其任意2 个解则下列结论错误的是()a.1+2是 axo 的一个解 b.121122是 ax b 的一个解c.12是 ax o 的一个解d. 212是 ax b 的一个解8.设 a 为 3 阶方阵a 的特征值为123 则 a1的特征值为()a. 2 1 3 b. 1/2 1/4 1/6 c. 1 1/2 1/3d. 2 1 69. n 阶矩阵 a 可对角化的充分必要条件是()a. a 的不同特征值的个数小于n b.a 的线性无关特征向量个数小于nc. a 有 n个线性无关的特征向量 d.上述命题都不对10.设二次型的标准形为2212fyy,则二次型的秩为()a.2 b.-1 c.1 d.3 参考答案 : 1.d 2.a 3. d 4.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 赤峰翁牛特旗公务员考试试题及答案
- 电缆辅材生产线项目建设工程方案
- 城市生态综合整治项目施工方案
- 北辰区公务员行测考试试题及答案
- 片区城中村改造项目施工方案
- 乡镇污水处理及配套管网工程初步设计
- 十五五规划纲要:碳市场扩容与减排激励机制创新
- 2026年建筑装饰公司装饰工艺研发立项评审管理制度
- 数据要素治理体系:“十五五”制度创新重点
- 信阳航空考试题库及答案
- 洗车行安全管理制度
- 成人重症患者颅内压增高防控护理专家共识
- 风电约3.9GW!重庆发布“十五五”能源规划任务分解实施方案
- 细胞库建立管理制度
- 工业机器人技术基础 课件 3-ABB常用功能函数指令
- 消防检测合格标准项消防隐患标准用语参考手册
- 2025-2030中国军用推进剂和炸药行业市场现状供需分析及投资评估规划分析研究报告
- GB/T 45473-2025复合材料和增强纤维碳纤维增强塑料(CFRPs)和金属组件十字拉伸强度的测定
- 兽药使用规范试题及答案
- 鸡鸣寺建筑剖析
- 《皮肤知识》培训课件
评论
0/150
提交评论