网络范文35kV变电所电气部分设计_第1页
网络范文35kV变电所电气部分设计_第2页
网络范文35kV变电所电气部分设计_第3页
网络范文35kV变电所电气部分设计_第4页
网络范文35kV变电所电气部分设计_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、毕业论文论文题目:35kv变电所电气部分设计学 院:电力工程学院专业:电气自动化 学生姓名:范榆昊学 号:924614100030指导教师:郭剑峰 职称: 讲师2016年4月15日35kv变电所电气部分设计目录1引言62原始资料72.1电力系统接线图72.2系统情况72.3 10kv负荷情况72.4本地区气象条件83负荷统计和无功补偿的计算93.1负荷分析93.2负荷计算93.3无功补偿103.3.1无功补偿概述103.3.2无功补偿的计算103.3.3无功补偿装置113.3.4并联电容器装置的分组113.3.5并联电容器装置的接线124主变压器的选择134.1规程屮的有关变电所主变压器选择的

2、规定134.2主变台数的确定134.3主变容量的确定134.4主变形式的选择145电气主接线设计165.1电气主接线概述165.2主接线的设计原则165.3主接线设计的基本要求165.4主接线设计17541 35kv侧主接线设计175.4.2 10kv侧主接线设计175.4.3主接线方案的比较选择176短路电流计算206.1概述206.1.1产生短路的原因和短路的定义206.1.2短路的种类206.1.3短路电流计算的目的206.2短路电流计算的方法和条件216.2.1短路电流计算方法216.2.2短路电流计算条件216.3短路电流的计算236.3.1 10kv侧短路电流的计算236.3.2

3、35kv侧短路电流的计算246.3.3三相短路电流计算结果表257 电气设备的选择267.1 电气设备选择的一般条件267.1.1电气设备选择的一般原则267.1.2 电气设备选择的技术条件267.1.3环境条件287.2断路器隔离开关的选择297.2.1 35kv侧进线断路器、隔离开关的选择297.2.2 35rv主变压器侧断路器、隔离开关的选择307.2.3 10kv侧断路器、隔离开关的选择317.2.4选择的断路器、隔离开关型号表327.3母线的选择及校验327.3.1母线导体选择的一般要求327.3.2 35rv母线的选择337.3.3 10kv母线的选择357.3.4母线选择结果35

4、7.4互感器的选择357.4.1电流互感器的选择357.4.2电压互感器的选择377.5熔断器的选择387.5.1熔断器概述387.5.2 35rv侧熔断器的选择387.5.3 10kv侧熔断器的选择397.6配电装置的选择397.6.1配电装置概述397.6.2 35rv屋外配电装置397.6.3 10kv高压开关柜40结论41致谢42参考文献43 扌商要:随着电力行业的不断发展,人们对电力供应的要求越来越高,特别是供稳固 性、可靠性和持续性。然而电网的稳固性、可靠性和持续性往往取决于变电 所的合理设计和配置。一个典型的变电站要求变电设备运行可靠、操作灵活、 经济合理、扩建方便。出于这儿方面

5、的考虑,本论文设计了一个35kv降压 变电站,此变电站有两个电压等级,一个是35kv, 一个是lokvo同时对于变 电站内的主设备进行合理的选型。木设计选择选择两台主变压器,其他设备 如断路器,隔离开关,电流互感器,电压互感器,无功补偿装置和继电保护 装置等等也按照具体要求进行选型、设计和配置,力求做到运行可靠,操作 简单、方便,经济合理,具有扩建的可能性和改变运行方式时的灵活性。使 其更加贴合实际,更具现实意义。关键词35kv变电所设计abstract: along with the continuous development of electric industry, people re

6、quire increasingly demand of power supply, especially the stability, reliability and continuity of it. while the stability, reliability and continuity of power grid is determined by the rational design and configuration of substation. a typical substation needs the reliable and flexible operation, t

7、he economic rationality and free expansion of the equipments. for the consideration of these aspects, the paper designs a transformer substation of 35kv which has tow level of voltage, one is 35kv, and the other is lokv. at the same time, choose the rational selection as to the main equipments in su

8、bstation. this design chooses two main transformers. as to other equipments such as circuit breaker, isolating switch, current transformer, voltage transformer, reactive power compensation device, protective relay and so on are to be selected, designed, and configured in accordance with specific req

9、uirements. in order to make it reliable to operate, easy and simple to manipulate, economical, with the possibility of expansion and flexibility of changing its operation. as to make it more actual and practical significant.key words 35kv substation design引言电能是发展国民经济的基础,是一种无形的、不能大量储存的二次能源。电能 的发、变、送、

10、配和用电,几乎是在同一瞬间完成的,须随时保持功率平衡。要满 足国民经济发展的要求,电力工业必须超前发展,这是世界电力工业发展规律,因 此,做好电力规划,加强电网建设,就尤为重要。变电所作为变电站作为电力系统的重要组成部分,它直接影响整个电力系统的 安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。 对其进行设计势在必行,合理的变电所不仅能充分地满足当地的供电需求,还能有 效地减少投资和资源浪费。本次设计根据一般变电所设计的步骤进行设计,包括负荷统计,主变选择,主 接线选择,短路电流计算,设备选择和校验,继电保护,防雷措施等儿大块。并依 据相关规定和章程设计其中个个步骤,所

11、以能满足一般变电所的需求。根据我国变电所目前现有电气设备状况以及今后发展趋势,应选用新型号、低 损耗、低噪声的电力变压器及性能好、时间长、免维护的sf6断路器及高压开关柜。 为此新的设备选择也在设计中得以体现。由于时间仓促和自身知识的局限,导致在 设计中难免有遗漏和错误之处,望读者予以批评指正。2原始资料2.1电力系统接线图待设计变电所进线如图1所示:a变电所b变电所5 km20km待设计变电所图2.1变电所进线示意图2.2系统情况待设计变电所通过一条架空线路由正西方向5km处的一-座110kv变电所a送电, 回路最大传输功率不大于11. 7mw, a变电所系统容量为3000mw。西北方向20

12、km处一 座35kv变电所b通过一条架空出线与待设计变电所联系,平时木所与b变电所有少 量功率交换。本所投运后功率因数要求到达0.9。2.3 10kv负荷情况10kv负荷情况如表1所示表2.1 10kv负荷分布情况负荷名称最大负荷(kw)回路数供电方式功率因数视在功率(kva)1#出线15001架空0.852#出线8001架空0.853#出线8001架空0.84#出线10001架空0.855#出线15001架空0.96#出线12001架空0.85电容器回路210kv侧负荷同时率:0.85; 10kv侧最小负荷是最大负荷的45%;10kv侧最大负荷利用小时数rmax=4800h;待设计变电所年负

13、荷增长率为5%02.4本地区气象条件最高气温4逖=+410 最低气温nin =-12 c;年平均气温=+16.4 c;最 热月平均最高温度=4-26° co3负荷统计和无功补偿的计算3.1负荷分析根据用电的重要性和突然中断供电造成的损失程度可以将负荷分为以下三类:1 一类负荷一类负荷,又称为一级负荷,是指突然屮断供电将造成人身伤亡或引起对周围 环境的严重污染,造成经济上的巨大损失。如重要大型设备损失、重要产品或重要 原料生产的产品大量报废、连续生产过程被打乱且需要长时间才能恢复、造成社会 秩序严重混乱或产生政治上的重大影响、重要的交通和通讯枢纽屮断、国际社交场 所没有照明等。2二类负

14、荷二类负荷,又称为二级负荷,是指突然屮断供电会造成经济上的较大损失。如 生产的主要设备损坏、产品大量报废或减产、连续生产过程需要较长时间才能恢复、 造成社会秩序混乱、在政治上产生较大影响、交通和通讯枢纽以及城市供水中断、 广播电视、商贸中心被迫停止运营等。3三类负荷三类负荷,又称为三级负荷,是指不属于以上一类和二类负荷的其他用电负 荷。对于这类负荷,供电所所造成的损失不大或不会直接造成损失。用电负荷的分类,其主要目的是确定供电工程设计和建设的标准,保证建成投 入运行工程供电的可靠性,能满足生产或社会安定的需要。对于一级负荷的用电设 备,应有两个及以上的独立电源供电,并辅z其他必要的非电保安设施

15、。二级负 荷应由两回线供电,但当两回线路有困难时(如边远地区),允许有一回专用架空线 路供电。三级负荷对供电无特殊要求,允许较长时间停电,可用单回线路供电。这 次设计的变电所所带的负荷均为三级负荷,因此可以用单回线路供电。3.2负荷计算10kv侧的负荷计算工 p = 1 5+0. 8+0. 8+1+1. 5+1. 2=6. 8mwe<?=1- 5*0. 62+0. 8*0. 62+0. 8*0. 75+1*0. 62+1. 5*0. 48+1. 2*0. 62=4. llmvar = j(工 p)2+(工02(3-1)= 76.82 +4.112 =7. 95mva功率因数cos。二0.

16、 863.3无功补偿3.3.1无功补偿概述电力系统中有许多根据电磁感应原理工作的电气设备,如变压器、电动机、感 应炉等。都是依靠磁场来传送和转换电能的电感性负载,在电力系统中感应电动机 约占全部负荷的50%以上。电力系统中的无功功率很大,必须有足够的无功电源,才 能维持一定的电压水平,满足系统安全稳定运行的要求。电力系统中的无功电源由三部分组成:1发电机可能发出的无功功率(一般为有功功率的40%、50%)。2无功功率补偿装置(并联电容器和同步调相机)输出无功功率。3 llokv及以上电压线路的充电功率。电力系统中如无功功率小,将引起供电电网的电压降低。电压低于额定电压 值时,将使发电、送电、变

17、电设备均不能达到正常的出力,电网的电能损失增大, 并容易导致电网震荡而解列,造成大面积停电,产生严重的经济损失和政治影响。 电压下降到额定电压值的60%70%时,用户的电动机将不能启动甚至造成烧毁。所以 进行无功补偿是非常有必要的。3.3.2无功补偿的计算补偿前cos%二0.86,求补偿后达到0.9。因此可以如下计算: 设需要补偿xmva的无功cos (p2(3-2)6.876.82+(4.11-x)2解得 x=0.82mvar3.3.3无功补偿装置无功补偿装置分为串联补偿装置和并联补偿装置两大类。并联补偿装置又可分 为同期调相机、并联电容补偿装置、静补装置等几大类。同期调相机相当于空载运行的

18、同步电动机在过励磁时运行,它向系统提供可无 级连续调节的容性和感性无功,维持电网电压,并可以强励补偿容性无功,提高电 网的稳定性。在我国经常在枢纽变电所安装同步调相机,以便平滑调节电压和提高 系统稳定性。静止补偿器有电力电容器与可调电抗并联组成。电容器可发出无功功率,电抗 器可吸收无功功率,根据电压需要,向电网提供快速无级连续调节的容性和感性的 无功,降低电压波动和波形畸变率,全面提高电压质量,并兼有减少有功损耗,提 高系统稳定性,降低工频过电压的功能。其运行维护简单,功耗小,能做到分相补 偿,对冲击负荷也有较强的适应性,因此在电力系统中得到越来越广泛的应用。但 设备造价太高,本设计中不宜采用

19、。电力电容器可按三角形和星形接法连接在变电所母线上。既可集屮安装,又可 分散装设来接地供应无功功率,运行时功率损耗亦较小。综合比较以上三种无功补偿装置后,选择并联电容器作为无功补偿装置,并且 采用集中补偿的方式。3.3.4并联电容器装置的分组1分组原则(1)对于单独补偿的某台设备,例如电动机、小容量变压器等用的并联电容器 装置,不必分组,可直接与该设备相连接,并与该设备同时投切。(2)配电所装设的并联电容器装置的主要目的是为了改善电网的功率因数。此 时,为保证一定的功率因数,各组应能随负荷的变化实行自动投切。负荷变化不大时,可按主变压器台数分组,手动投切。(3)终端变电所的并联电容器装置,主要

20、是为了提高电压和补偿主变压器的无 功损耗。此时,各组应能随电压波动实行自动投切。投切任一组电容器时引起的电 压波动不应超过2.5%。2分组方式并联电容器的分组方式主要有等容量分组、等差级数容量分组、带总断路器的 等容量分组、带总断路器的等差级数容量分组。这儿种方式中等容量分组方式,分 组断路器不仅要满足频繁切合并联电容器的要求,而且还要满足开断短路的要求, 这种分组方式应用较多,因此采用等容量分组方式。3.3.5并联电容器装置的接线并联电容器装置的接线基本形式有星形和三角形两种。经常采用的述有由星形 派生岀的双星形,在某种场合下,也有采用由三角形派生岀的双三角形。从电力工程电气设计手册(一次部

21、分)502页表9-17可比较得岀,应采用 y形接线,因为这种接线适用于6kv及以上的并联电容器组,并且容易布置,布置 清晰。并联电容器组装设在变电所低压侧,主要是补偿主变和负荷的无功功率,为了 在发生单相接地故障时不产生零序电流,所以采用中性点不接地方式。选用bfm115003型号的高压并联电容器2台。额定电压llkv。额定容量500kvaro4主变压器的选择4.1规程中的有关变电所主变压器选择的规定1主变容量和台数的选择,应根据电力系统设计技术规程sdj161-85有关 规定和审批的电力规划设计决定进行。凡有两台及以上主变的变电所,其屮一台事 故停运后,其余主变的容量应保证供应该所全部负荷的

22、70%,在计及过负荷能力后 的允许时间内,应保证用户的一级和二级负荷。若变电所所有其他能源可保证在主 变停运后用户的一级负荷,则可装设一台主变压器。2与电力系统连接的220330kv变压器,若不受运输条件限制,应选用三相变 压器。3根据电力负荷的发展及潮流的变化,结合系统短路电流、系统稳定、系统继电 保护、对通信线路的影响、调压和设备制造等条件允许时,应采用自耦变压器。4在220330kv具有三种电压的变电所屮,若通过主变各侧绕组的功率均达到 该变压器额定容量的15%以上,或者第三绕组需要装设无功补偿设备时,均宜釆用 三绕组变压器。5主变调压方式的选择,应符合电力系统设计技术规程sdj161的

23、有关规定。4.2主变台数的确定为保证供电的可靠性,变电所一般应装设两台主变,但一般不超过两台主变。当 只有一个电源或变电所的一级负荷另有备用电源保证供电时,可装设一台主变。对 大型枢纽变电所,根据工程的具体情况,应安装24台主变。本次设计的变电所没有一级负荷,所以釆用两台主变。4.3主变容量的确定主变容量的确定应根据电力系统510年发展规划进行。当变电所装设两台及以 上主变吋,每台容量的选择应按照其中任一台停运吋,其余容量至少能保证所供一 级负荷或为变电所全部负荷的6075%。由3.2的负荷计算得知10kv侧的负荷总量为7.95mvao考虑0 = 5%的年负荷增长率,5年规划年限内计算负荷可表

24、示为:(4-1)(1+宀1+嗨1 v (1 + i)c0 1 + z式屮s第一年的负荷; co年负荷增长率; n规划年数; i年利率。带入 i=0.1, n=5, co=5%, s=795mva 得二11.98mva。再考虑同时系数时,可按下式算:(4-2)工ss式中k。一负荷同时系数带入 k()=0.85 得工 s-10.18mva。对于两台变压器的变电所,其变压器的额定容量可按下式确定:sc =0.7 工 5* =0.7* 108=73mva总安装容量为2* (0.7工st二1.4工s,如此当一台变压器停运,考虑变压器的过负荷能力为40%,则可保证98的负荷 供电。所以应选容量为7500k

25、va的变压器。4.4主变形式的选择主变一般采用三相变压器,若因制造和运输条件限制,在220kv的变电所中, 可釆用单相变压器组。当今社会科技口新月异,制造运输以不成问题,因此釆用三 相变压器。在关于绕组上,只有220330kv具有三种电压的变电所中,若通过主变各侧绕 组的功率均达到该变压器额定容量的15%以上,或者第三绕组需要装设无功补偿设 备时,均宜采用三绕组变压器。此次设计的变电所只有35kv和10kv两个电压等级, 所以采用双绕组变压器。我国llokv及以上电压,变压器绕组都采用y0连接;35kv亦采用y连接,其 中性点多通过消弧线圈接地。35kv及以下电压,变压器绕组都采用连接。因此3

26、5kv 侧采用y连接,10kv侧采用接线。根据上述的讨论选用35kv铝线双绕组电力变压器,该变压器的型号为sjl, 7500/35.具体技术数据如下表:表4.1变压器技术参数型号sjl(7500/35额定容量(kva)7500额定电压(kv)高压35低压10.5损耗(kw)空载9.6短路57短路电压(%)7.5空载电流(%)0.95电气主接线设计5.1电气主接线概述发电厂和变电所屮的一次设备、按一定要求和顺序连接成的电路,称为电气主 接线,也成主电路。它把各电源送來的屯能汇集起来,并分给各用户。它表明各种 一次设备的数量和作用,设备间的连接方式,以及与电力系统的连接情况。所以电 气主接线是电力

27、系统接线组成屮的一个重要组成部分。主接线的确定,对电力系统 得安全、稳定、灵活、经济运行以及变屯所电气设备的选择、配电装置的布置、继 电保护和控制方法的拟定将会长生直接的影响。.5.2主接线的设计原则1发电厂、变电所在电力系统中的地位和作用;2发电厂、变电所的分期和最终建设规模;3负荷大小和重要性;4系统备用容量大小;5系统专业对电气主接线提供的具体资料。5.3主接线设计的基本要求根据我国能源部关于220500kv变电所设计技术规程sdj 2-88规定:“变电 所的电气主接线应根据该变电所在电力系统中地位,变电所的规划容量、负荷性质、 线路、变压器连接元件总数、设备特点等条件确定。并应综合考虑

28、供电可靠、运行 灵活、操作检修方便、投资节约和便于过渡或扩建等要求。”因此对主接线的设计要 求可以归纳为以下三点。1可靠性;2灵活性;3经济性。5.4主接线设计电气主接线的基本形式就是主要电气设备常用的几种连接方式,它以电源和出 线为主体。大致分为有汇流母线和无汇流母线两大类。其中有汇流母线的接线形式 可概括地分为单母线接线和双母线接线两大类;无汇流母线的接线形式主要有桥形 接线、角形接线和单元接线。5.4.1 35kv侧主接线设计35kv侧进线一冋,由于使用两台变压器并且还和另一座变电所联络,所以出线 三回。由电力工程电气设计手册第二章关于单母线接线的规定:“3563kv配电装 置的出线冋数

29、不超过3回”。故35kv侧应采用单母线接线。5.4.2 10kv侧主接线设计10kv侧出线6回,终期出线8回。由电力工程电气设计手册第二章规定:610kv配电装置出线回路数为6回 及以上时采用单母线分段接线,当短路电流过大、出线需要带电抗器时,也可采用 双母线接线。5.4.3主接线方案的比较选择由上可知,此变电所主接线的接线有两种方案。方案一图:it it图5.1电气主接线方案一图方案一 35kv侧采用的单母线接线,接线简单清晰、设备少、操作方便、便于扩 建和采用成套配电装置。10kv采用单母线分段连线,对重要用户可从不同段引出两 个回路,当一段母线发生故障,分段断路器自动将故障切除,保证正常

30、母线供电不 间断,所以此方案同时兼顾了可靠性,灵活性,经济性的要求。方案二图:1x、,/xx-/< x、/ / /图5. 2电器主接线方案二图方案二10kv侧通过双母线虽然可以使供电更可靠,调度更加灵活,但每增加 一组母线就使每回路需要增加一组母线隔离开关,当母线故障或检修时,隔离开关作为倒换操作电器,容易课操作。并且,带设计边变电所的负荷均每什么一类、二类负荷,没必要增加投资选择双母线接线。综合考虑:方案一:35kv侧采用单母线接线,10kv侧采用单母线分段。方案二:35kv侧采用单母线接线,10kv侧采用双母线接线。通过比较可以得知还是选方案一比较合适,即35kv侧采用单母线接线,1

31、0kv 侧采用单母线分段。短路电流计算6.1概述6.1.1产生短路的原因和短路的定义产生短路的主要原因是电器设备载流部分的绝缘损坏。绝缘损坏的原因多因设 备过电压、直接遭受雷击、绝缘材料陈旧、绝缘缺陷未及时发现和消除。此外,如 输电线路断线、线路倒杆也能造成短路事故。所谓短路时指相与相z间通过电弧或 其它较小阻抗的一种非正常连接,在屮性点直接接地系统中或三相四线制系统屮, 还指单相和多相接地。6.1.2短路的种类三相系统中短路的基本类型有:三相短路、两相短路、单相接地短路、和两相 接地短路。三相短路时对称短路,此时三相电流和电压同正常情况一样,即仍然是 对称的。只是线路屮电流增大、电压降低而已

32、。除了三相短路z外,其它类型的短 路皆系不对称短路,此吋三相所处的情况不同,各相电流、电压数值不等,其间相 角也不同。运行经验表明:在屮性点直接接地的系统中,最常见的短路是单相短路,约占 短路故障的6570%,两相短路约占1015%,两相接地短路约占1020%,三相短路 约占5%6.1.3短路电流计算的目的1电气主接线比选;2选择导体和电器;3确定中性点接地方式;4计算软导体的 短路摇摆;5确定分裂导线间隔棒的间距;6验算接地装置的接触电压和跨步电压; 7选择继电保护装置和进行整定计算。6.2短路电流计算的方法和条件6.2.1短路电流计算方法电力系统供电的工业企业内部发牛短路时,由于工业企业内

33、所装置的元件,其 容量比较小,而其阻抗较系统阻抗大得多,当这些元件遇到短路情况时,系统母线 上的电压变动很小,可以认为电压维持不变,即系统容量为无穷大。所谓无限容量 系统是指容量为无限大的电力系统,在该系统中,当发牛短路时,母线电业维持不 变,短路电流的周期分量不衰减。当然,容量所以们在这里进行短路电流计算方法,以无穷大容量电力系统供电作为前提计算的, 其步骤如下:1对各等值网络进行化简,求出计算电抗;2求岀短路电流的标么值;3归算到各电压等级求出有名值。6.2.2短路电流计算条件1短路电流实用计算中,采用以下假设条件和原则:(1)正常工作时,三相系统对称运行;(2)所有电源的电动势相位角相同

34、;(3)系统中的同步和异步电机均为理想电机,不考虑电机磁饱和、磁滞、涡流 及导体集肤效应等影响,转子结构完全对称,定子三相绕组空间位置相差120度电 气角度;(4)电力系统中的各元件的磁路不饱和,即带铁芯的电气设备电抗值不随电流 大小发生变化;(5)电力系统中所有电源都在额定负荷下运行,其中50%负荷接在高压母线上, 50%负荷接在系统侧;(6)同步电机都具有自动调整励磁装置(包括强行励磁);(7)短路发牛在短路电流为最大值的瞬间;(8)不考虑短路点的电弧阻抗和变压器的励磁电流;(9)除计算短路电流的衰减时间常数和低压网络的短路电流外,元件的都略去不计;(10)元件的计算参数均取为额定值,不考

35、虑参数的误差和调整范围;(11)输电线路的电容略去不计;(12)用概率统计法制定短路电流运算曲线。2接线方式计算短路电流时所用的接线方式,应是可能发生最大短路电流的止常接线方 式,而不能用仅在切换过程中可能并联运行的接线方式。3计算容量应按本工程设计的规划容量计算,并考虑电力系统的远景发展规划。4短路点的种类一般按三相短路计算,若发电机的两相短路时,中性点有接地系统的以及自耦 变压器的回路中发生单相(或两相)接地短路较三相短路情况严重时,则应按严重 情况的时候进行计算。5短路点位置的选择短路电流的计算,为选择电气设备提供依据,使所选的电气设备能在各种情况 下正常运行,因此短路点的选择应考虑到电

36、器可能通过的最大短路电流。为了保证 选择的合理性和经济性,不考虑极其稀有的运行方式。取最严重的短路情况分别在 10kv侧的母线和35kv侧的母线上发生短路情况(点a和点b发生短路)。则选择这 两处做短路计算。/< 图6.1短路点选择图6.3短路电流的计算6.3.1 10kv侧短路电流的计算图中a点短路,由于a,b系统短路容量都很大,可以近似都看作为无穷大系统电源系统。取 sj=100mw, uji二37kv, uj2= 10.5kvo 由公式1= (6-1) v31/求的 ij=1.56ka, ij2=5.50kao线路等效图如下图所示:(6-2)线路1 x产xiasb=0.4*5* 1

37、00/37 2=0461线路2 x?二x严=0.4*20* 100/372 =0.5844(6-3)变压器x产沁皿7100 s变=0.075*100/7.5=1取el二e2=l简化后等效电路图如下图所示:elx12% xt/ _:.:va_-aaa/z2图6. 3 10kv侧短路等效简化图x12=xj/x2 =04617/0.5844=0.1169工 x =x 12 +0.5 *x 产 0.1169+0.5*1 =0.6169三相短路电流周期分量有效值=5.50/0.6169=8.9155ka(6-4)三相短路冲击电流最大值(6-5)(6-6)ish=2.55*=2.55*8.9155二22.

38、7346ka短路冲击电流有效值ish= 1.51*1=1.51*8.9155=13.4625ka三相短路容量s « =巧 u二 1.732* 10.5*8.9155= 162429mva(6-7)6.3.2 35kv侧短路电流的计算等效电路图如下图所示:eixi 2/ bva图6. 4 35kv侧短路等效简化图工 x=x |产0.1169三相短路电流周期分量有效值= 1.56/0.1169二 133447ka三相短路冲击电流最大值ish=2.55* i=2.55*13.3447=34.0291ka八2短路冲击电流有效值ish= 1.51*1=1.51* 13.3447=20.1506

39、ka三相短路容量s « =巧 *u “ i£ 二 1.732*37* 13.3447=855.1843mva6.3.3三相短路电流计算结果表表6.1三相短路电流计算结果表短路点编 号短路点额 定电压平均工作 电压短路电流周期分量有 效值短路点冲击电流短路容量有效值最大值un/kv%/kvi 丫)/kai /kaish加s k /mvaa1010.58. 91558. 915513. 462522. 7346162. 1429b353713. 344713. 344720. 150634.0291855.18437电气设备的选择7.1电气设备选择的一般条件7.1.1电气设备选

40、择的一般原则1应满足正常运行、检修、短路和过电压情况下的要求,并考虑远景发展;2应按当地环境条件校核;3应力求技术先进和经济合理;4与整个工程的建设标准应协调一致;5同类设备应尽量减少品种;6选用的新产品均应具有可靠的试验数据,并经正式鉴定合格。在特殊情况 下,选用未经正式鉴定的新产品时,应经上级批准。7.1.2电气设备选择的技术条件选择的高压电器,应能在长期工作条件下和发生过电压、过电流的情况下保持 正常运行。1长期工作条件(1) 电压选用的电器允许最高工作电压umax不得低于该冋路的最高运行电压ug,即umax>ug(2) 电流选用的电器额定电流ie不得低于所在冋路在各种可能运行方式

41、下的持续工作 电流ig,即ie>ig由于变压器短时过载能力很大,双回路出线的工作电流变化幅度也较大,故其 计算工作电流应根据实际需要确定。高压电器没有明确的过载能力,所以在选择其 额定电流时,应满足各种可能运行方式下回路持续工作电流的要求。(3) 机械荷载所选电器端子的允许荷载,应大于电器引线在正常运行和短路吋的最大作用力。2短路稳定条件(1)校验的一般原则 电器在选定后应按最大可能通过的短路电流进行动、热稳定校验。校验的短 路电流一般取三相短路时的短路电流,若发电机出口的两相短路,或中性点直接接 地系统及自耦变压器等回路中的单相、两相接地短路较三相严重时,应按严重情况 校验。 用熔断器

42、保护的电器可不验算热稳定。当熔断器保护的电压互感器凹路,可 不验算动、热稳定。(2)短路的热稳定条件> qk(7-1)式中q在计算时间t,秒内,短路电流的热效应(ka2*s); i一t秒内设备允许通过的热稳定电流有效值(ka); t设备允许通过的热稳定电流时间(s)o(3)短路的动稳定条件ish %( 7-2)(7-3)式中心一短路冲击电流峰值(ka);山一短路全电流有效值(ka);电器允许的极限通过电流峰值(ka);/妙一电器允许的极限通过电流有效值(ka)。3绝缘水平在工作电压和过电压的作用下,电器的内、外绝缘应保证必要的可靠性。电器 的绝缘水平,应按电网中出现的各种过电压和保护设备

43、相应的保护水平来确定。当 所选电器的绝缘水平低于国家规定的标准数值时,应通过绝缘配合计算,选用适当 的过电压保护设备。表7.1选择高压电器应校验的项目表项目电压电流断流容量短路电流校验动稳定热稳定断路器负荷开关z/zz/隔离开关/熔断器/电抗器/电流互感器/电丿玉互感器/支柱绝缘子/母线/消弧线圈/避雷器/表屮/为应进行校验的项目7.1.3坏境条件按交流高压电器在长期工作时的发热(gb763-74)的规定,普通高压电器在 环境最高温度为+40°c时,允许按额定电流长期工作。当电器安装点的环境温度高 于+40 °c (但不高于+60 °c)时,每增高1°c

44、 ,建议额定电流减少1. 8%;当低于+40 °c 时,每降低1°c,建议额定电流增加0.5%,但总的增加值不得超过额定电流的20%。 普通高压电器一般可在环境最低温度为-30°c时正常运行。在高寒地区,应选择能 适应环境温度为-40°c的高寒电器。在年最高温度超过40。0,而长期处于低湿度的 干热地区,应选用型号带“ta”字样的干热带型产品。本次设计的变电所所在地区最高气温nlax =+41°c;最低气温久祜二-匕仑;年 平均气温=+16.4“c;最热月平均最高温度&讪=+26°c。对于屋外安装场所的 电器最高温度选择年最高

45、温度,最低温度选择年最低温度,可见最高气温为+41 °c, 由规定知在选择电器设备时额定电流应减少18%,最低温度为-12°c,电器设备可 正常运行。7.2断路器隔离开关的选择72135kv侧进线断路器、隔离开关的选择流过断路器和隔离开关的最大持续工作电流zniax =(2xsn)/un =2x7500/(73 x 35) = 247.44a (7-4)额定电压选择 un > =35kv额定电流选择 in > /niax = 247.44a开断电流选择 inbr > if = 13.3447k4本设计中35kv侧采用sfc断路器,因为与传统的断路器相比,s

46、fe断路器采用sf6 气体作为绝缘和灭弧介质,这种断路器具有断口耐压高,允许的开断次数多,检修 时间长,开断电流大,灭弧时间短,操作时噪声小,寿命长等优点。因此可选用lw8 35a型户外高压s%断路器。选用的断路器额定电压为35kv,最高工作电压为40. 5kv,系统电压35kv满足 要求。选用的断路器额定电流1600a,去除1.8%的温度影响为1571a,大于最大持续工 作电流,满足要求。选用的断路器额定短路开断电流31.5ra,大于短路电流周期分量有效值 13. 3447ka,满足要求。动稳定校验。ish二34.0291kav°=80ka,满足要求。热稳定校验。由电力工程电气设计

47、手册电气一次部分表65知,选用高速 断路器,取继电保护装置保护动作时间0.6s,断路器分匝吋间0.03s,则校验热效应 计算时间为0.63s (后面热稳定校验时间一样)。因此 qk二疋/ = 13.34472x0.63二 112.19 (ka) 2so 电气设备zz2r =31.52x4=3969 (ka) 2s<> 满足要求。表7. 2 lw835a具体参数比较表计算数据lw835a35kv535kvmax247. 44a1600a13.3447kanhr31. 5ka34. 0291 ka80ka2112. 19 (ka) %3969 (ka) 2s隔离开关选择gw14-35/

48、630型号隔离开关选用的隔离开关额定电压为35kv,系统电压35kv满足要求。选用的断路器额定电流630a,去除1. 8%的温度影响为618. 7a,大于最大持续工 作电流,满足要求。动稳定校验ish =34.029lka<z#=40ka,满足要求。热稳定校验 qk=112.19 (ka) 2s,设备 /;r=162x4 = 1024 (ka) 2s,满足要求。表7. 3 gw1435/630具体参数比较表计算数据gw 1435/63035kv535kv'max247. 44a630a34. 0291 kahif40ka112. 19 (ka) 2si;t1024 (ka) 2s

49、7.2.2 35kv主变压器侧断路器、隔离开关的选择流过断路器和隔离开关的最大持续工作电流/inux =(1.05xsa,)/73t/v =1.05x7500/(73x35)=129. 90a(7-5)额定电压选择 un>u(, =35kv额定电流选择in > /max = 129.90/1开断电流选择inhr >冷=13.3447m由上面表格知lw8-35a型断路器和gw14-35/630型隔离开关同样满足主变侧 断路器和隔离开关的要求,动、热稳定校验也一样,所以选择同样的型号。这也满 足了选择设备同类设备应尽量较少品种的原则。7.2.3 10kv侧断路器、隔离开关的选择流

50、过断路器和隔离开关的最大持续工作电流/max =(2x5)/= 2x7500/(v3xlo) =866. 03a额定电压选择un>u, =10kv额定电流选择in > /max = 866.03a开断电流选择inhr > if =8.9155mlokv侧选用真空xgn210开关柜中的zn2810型真空断路器选用的断路器额定电压为10kv,最高电压11.5kv,系统电压10kv满足要求。 选用的断路器额定电流1600a,去除1.8%的温度影响为1571a,大于最大持续工 作电流,满足要求。选用的断路器额定短路开断电流20ka,大于短路电流周期分量有效值8. 9155ra, 满足

51、要求。动稳定校验。*h二227346kav°=50ka,满足要求。热稳定校验。qk= lit =8.9155, x 0.63=50.08 ( ka ) 2s o 电气设备 z,2r=202x4=1600 (ka) 2so 满足要求。表7. 4 zn2810具体参数比较表计算数据zn281010kv5lokvmax866. 03ain1600a8. 9155kanhr20ka22.7346ka50ka250. 08 (ka) 2si;t1600 (ka) 2s隔离开关选择gn25-10型隔离开关选用的隔离开关额定电压10kv,最高工作电压11.5kv系统电压10kv,满足要 求。选用的

52、隔离开关额定电流2000a,去除1.8%的温度影响为1964a,大于最大持续 工作电流,满足要求。动稳定校验。ish二227346kav0 = looka,满足要求。热稳定校验。qk= lit =8.91552 % o.63=5o.o8 ( ka ) 2s o 电气设备 =402x4=6400 (ka) 2so 满足要求。表7. 5 gn2510具体参数比较表计算数据gn251010kv5lokv'max866. 03a2000a22.7346kahiflooka250. 08 (ka) 2si;t6400 (ka) 2s7.2.4选择的断路器、隔离开关型号表表7. 6断路器-隔离开关

53、选择一览表断路器隔离开关35kv进线侧lw835agw1435/63035kv主变侧lw835agw1435/630lokv 侧zn2810gn25107.3母线的选择及校验7.3.1母线导体选择的一般要求1 一般要求裸导体应根据具体情况,按下列技术条件分别进行选择或校验:(1) 工作电流;(2) 经济电流密度;(3) 电晕;(4) 动稳定或机械强度;(5) 热稳定。裸导体尚应按下列使用环境条件校验:(1)环境温度;(2) h照;(3)风速;(4)海拔高度。2按回路持续工作电流一导体回路持续工作电流,单位为a;相应于导体在某一运行温度、环境条件及安装方式下长期允许的载流量, 单位为ao3按经济

54、电流密度选择一般母线较长,负荷较大,在综合考虑减少母线的电能损耗。减少投资和节约 有色金属的情况下,应以经济电流密度选择母线截面。可按下式计算,即s,丄(7-6)7 j其中sj经济截面,单位为niif;/一回路持续工作电流,单位为a; 丿一经济电流密度,单位为a/ mm%7.3.2 35kv母线的选择35kv的长期工作持续电流/max = (2x sn ) / 品un 二 2 x 7500/(巧 x 35) = 247.44a35kv主母线一般选用矩形的硬母线,选择lmy-100x6立放矩形铝母线+40°c吋 长期允许电流为1155a,母线平放吋乘以0. 95,则允许电流为1097a,满足35kv主 母线持续电流247. 44a的要求。主母线动稳定校验35kv母线固定间距取1二2 000mm,相间距取a=300mm,母线短路冲击电流(7-7)(7-8)isl =34. 0291 ka,计算母线受到的电动力,即f = 1.764-x10-2a=1.76x34.02912 xxw2 =135. 87kgf300= 1332. 88n (lkgf=9.81n)计算母线受的弯曲力矩,” fl

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论