全等三角形专题讲解_第1页
全等三角形专题讲解_第2页
全等三角形专题讲解_第3页
全等三角形专题讲解_第4页
全等三角形专题讲解_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、ceodba全等三角形专题讲解专题一全等三角形判别方法的应用专题概说:判定两个三角形全等的方法一般有以下4 种:1三边对应相等的两个三角形全等(简写成“sss” )2两边和它们的夹角对应相等的两个三角形全等(简写成“sas” )3两角和它们的夹边对应相等的两个三角形全等(简写成“asa ” )4两个角和其中一个角的对边对应相等的两个三角形全等(简写成“aas ” )而在判别两个直角三角形全等时,除了可以应用以上4 种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“hl” ) 也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于

2、判别两个直角三角形全等三角形全等是证明线段相等,角相等最基本、 最常用的方法, 这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来那么我们应该怎样应用三角形全等的判别方法呢?(1)条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等例 1 已知:如图1,ceab 于点 e,bdac 于点 d,bd 、ce 交于点 o,且 ao 平分

3、 bac 那么图中全等的三角形有_对分析:由 ceab ,bdac,得 aeo= ado=90 o由 ao 平分bac ,得 eao= dao 又ao 为公共边,所以aeo ado 所以eo=do ,ae=ad 又 beo= cdo=90 o,boe= cod ,所以 boe cod由ae=ad , aeo= ado=90 o, bac 为公共角,所以eac dao 所以 ab=ac 又eao= dao , ao 为公共边,所以abo aco 图 1 所以图中全等的三角形一共有4 对(2)条件不足,会增加条件用判别方法此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分, 需

4、要补充使三角形全等的条件解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案21cedba2143coba例 2 如图 2,已知ab=ad , 1=2,要使 abc ade ,还需添加的条件是(只需填一个)_分析:要使 abc ade ,注意到 1= 2,所以 1+dac= 2+dac ,即 bac= eac 要使 abc ade ,根据 sas 可知只需ac=ae 图 2 即可;根据asa 可知只需 b=d;根据 aas 可知只需 c=e故可添加的条件是ac=ae 或 b=d 或 c=e(3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时,

5、当边或角的关系不明显时,可通过添加辅助线作为桥梁, 沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等例 3 已知:如图3,ab=ac , 1=2求证: ao 平分 bac 分析:要证ao 平分 bac ,即证 bao= bco,要证 bao= bco,只需证 bao 和 bco 所在的两个三角形全等而由已知条件知,只需再证明bo=co 即可证明:连结bc因为 ab=ac ,所以 abc acb 因为 1=2,所以 abc - 1 acb - 2图 3 即 3=4,所以 bo=co 因为 ab=ac ,bo=co ,ao=ao ,所以 abo aco所以 ba

6、o= cao ,即 ao 平分 bac (4)条件中没有现成的全等三角形时,会通过构造全等三角形用判别方法有些几何问题中,往往不能直接证明一对三角形全等,一般需要作辅助线来构造全等三角形例 4 已知:如图4,在 rt abc 中, acb=90 o,ac=bc , d 为 bc的中点, cead 于 e,交 ab 于 f,连接 dfgabfdecodacbfcedba求证: adc= bdf 证明:过 b 作 bgbc 交 cf 延长线于g,所以 bgac所以 g=ace 因为 ac bc,cead ,所以 ace= adc 所以 g=adc 因为 ac=bc , acd cbg=90 o,所

7、以图 4 acd cbg 所以bg=cd=bd 因为 cbf=gbf=45 o,bf=bf ,所以 gbf dbf所以 g=bdf 所以 adc bdf 所以 adc bdf说明:常见的构造三角形全等的方法有如下三种:涉及三角形的中线问题时, 常采用延长中线一倍的方法,构造出一对全等三角形;涉及角平分线问题时, 经过角平分线上一点向两边作垂线,可以得到一对全等三角形;证明两条线段的和等于第三条线段时,用“截长补短” 法可以构造一对全等三角形(5)会在实际问题中用全等三角形的判别方法新课标强调了数学的应用价值,注意培养同学们应用数学的意识,形成解决简单实际问题的能力在近年中考出现的与全等三角形有

8、关的实际问题,体现了这一数学理念,应当引起同学们的重视例 5 要在湖的两岸a、b 间建一座观赏桥,由于条件限制,无法直接度量a,b 两点间的距离请你用学过的数学知识按以下要求设计一测量方案(1) 画出测量图案(2) 写出测量步骤(测量数据用字母表示)图 5 (3) 计算 a、b 的距离(写出求解或推理过程,结果用字母表示)分析:可把此题转化为证两个三角形全等第(1) 题,测量图案如图5所示第 (2) 题,测量步骤:先在陆地上找到一点o,在 ao 的延长线上取一点 c,并测得oc=oa ,在 bo 的延长线上取一点d,并测得od=ob ,这时测得cd 的长为a,则 ab 的长就是a第 (3) 题

9、易证 aob cod,所以 ab=cd ,测得 cd 的长即可得ab 的长解: (1) 如图 6 示(2) 在陆地上找到可以直接到达a、b 的一点 o,在 ao 的延长线上取一点 c,并测得 ocoa ,在 bo 的延长线上取一点d,并测得 odob,这时测出cd 的长为a,则 ab 的长就是a(3) 理由:由测法可得oc=oa ,od=ob 又 cod= aob , cod aob cd=ab=a图 6 评注:本题的背景是学生熟悉的,提供了一个学生动手操作的机会,重点考查了学生的操作能力,培养了cedbaaoqmcpbnadcpbhfegadcbadcfbeadcbaodcbafcgbeaf

10、dcbe学生用数学的意识练习: 1已知:如图7,d 是 abc 的边ab 上一点, ab fc,df 交 ac 于点 e,de=fe图 7 求证: ae=ce 2如图 8,在 abc 中,点 e 在 bc 上,点d 在 ae 上,已知 abd= acd , bde= cde 求证: bd=cd 图 8 3用有刻度的直尺能平分任意角吗?下面是一种方法:如图9 所示,先在aob 的两边上取op=oq,再取 pm=qn ,连接 pn、qm ,得交点c,则射线oc 平分 aob 你能说明道理吗?图 94如图 10, abc 中, ab=ac ,过点 a 作gebc,角平分线bd、cf 相交于点h,它们

11、的延长线分别交ge 于点 e、g试在图 10 中找出 3 对全等三角形,并对其中一对全等三角形给出证明图 10 5已知:如图11,点 c、d 在线段ab 上, pc=pd请你添加一个条件,使图中存在全等三角形,并给予证明所添条件为 _,你得到的一图 11 对全等三角形是_ _6如图 12, 1=2,bc=ef ,那么需要补充一个直接条件_(写出一个即可) ,才能使 abc def图 12 7如图 13,在 abd 和 acd 中,ab=ac , b=c求证: abd acd 图 13 8如图 14,直线 ad 与 bc 相交于点o,且 ac=bd ,ad=bc 求证: co=do 图 14 9

12、已知 abc ,ab=ac ,e、f 分别为 ab 和 ac 延长线上的点,且be=cf ,ef 交 bc 于 g求证: eg=gf图 15 10已知:如图16,ab=ae ,bc=ed ,点 f 是 cd 的中点, afcd求证: b=e图 16 11如图 17,某同学把一把三角形的玻璃打碎成了三块,现在要到玻璃店去配一块大小形状完全一样的玻璃,那么最省事的办法是()43oedcba21fedcba21( a) 带和去 (b) 带去( c) 带去 (d) 带去图 17 12有一专用三角形模具,损坏后,只剩下如图 18 中的阴影部分,你对图中做哪些数据度量后,就可以重新制作一块与原模具完全一样

13、的模具,并说明其中的道理图 1813如图 19,将两根钢条aa 、bb的中点 o 连在一起,使aa 、bb 可以绕着点o 自由转动, 就做成了一个测量工件,则 a b 的长等于内槽宽 ab,那么判定 oab oab 的理由是()(a)边角边(b)角边角(c)边边边(d)角角边图 19 专题二角的平分线从一个角的顶点出发,把一个角分成相等的两个角的射线,叫做这个角的平分线 角的平分线有着重要的作用,它不仅把角分成相等的两部分,而且角的平分线上的点到角两边的距离相等,到一个角的两边距离相等的点在这个角的平分线上,再加上角的平分线所在的直线是角的对称轴因此当题目中有角的平分线时,可根据角的平分线性质

14、证明线段或角相等,或利用角的平分线构造全等三角形或等腰三角形来寻找解题思路(1)利用角的平分线的性质证明线段或角相等例 6 如图 20, 1 2,aeob 于 e,bd oa 于 d,交点为c求证: ac=bc 图 20 证法: aeob,bdoa , adc= bec=90 1 2, cd=ce在 acd 和 bce 中,adc= bec,cd=ce , 3 4 acd bce(asa) , ac=bc 说明:本题若用全等方法证明点c 到 oa 、ob 距离相等,浪费时间和笔墨,不如直接应用角平分线性质证明,原因在于同学们已经习惯了用全等的方法, 不善于直接应用定理,仍去找全等三角形,结果相

15、当于重新证明了一次定理, 以后再学新定理,应用时要注意全等定势的干扰,注意采用简捷证法例 7 已知:如图21, abc 中, bd=cd , 1 2求证: ad 平分 bac 证明:过 d 作 deab 于 e,dfac 于 f图 21 afhdcgbeadcbe在 bed 与 cfd 中, 1 2, bed cfd90,bd=cd , bed cfd(aas) dedf, ad 平分 bac 说明: 遇到有关角平分线的问题时,可引角的两边的垂线,先证明三角形全等, 然后根据全等三角形的性质得出垂线段相等,再利用角的平分线性质得出两角相等(2)利用角的平分线构造全等三角形过角平分线上一点作两边

16、的垂线段例 8 如图 22, abcd, e 为 ad 上一点,且 be、 ce 分别平分 abc 、bcd 求证: ae=ed 分析:由于角平分线上一点到角的两边的距离相等,而点e 是两条角平分线的交点,因此我们自然想到过点e 分别作 ab、 bc、cd 的垂线段证明:过点e 作 ef ab,交 ba 的延长线于点f,作 egbc,垂足为 g,作 ehcd,垂足为hbe 平分 abc ,efab, egbc,ef=eg同理 eg =eh ef=eh abcd, fae=defab ,eh cd, afe= dhe=90 o图 22 在 afe 和 dhe 中, afe= dhe ,ef=eh

17、 , fae= d afe dhe ae=ed 以角的平分线为对称轴构造对称图形例 9 如图 23,在 abc 中, ad 平分 bac , c=2b求证: ab=ac+cd 分析: 由于角平分线所在的直线是这个角的对称轴,因此在 ab 上截取ae=ac ,连接 de,我们就能构造出一对全等三角形,从而将线段ab 分成ae 和 be 两段,只需证明be=cd 就可以了证明:在 ab 上截取 ae=ac ,连接 dead 平分 bac , ead= cad 图 23 在 ead 和 cad 中, ead= cad ,ad=ad ,ae=ac , ead cad aed= c,cd=de c=2b

18、, aed=2 b aed= b+ ebd, b= edbbe=ed be=cd ab=ae+be , ab=ac+cd 延长角平分线的垂线段,使角平分线成为垂直平分线例 10 如图 24,在 abc 中, ad 平分 bac ,cead 于 e求证: ace= b+ecdafdcbecebadcfebadqpcba分析:注意到ad 平分 bac ,cead ,于是可延长ce 交 ab 于点f,即可构造全等三角形证明:延长ce 交 ab 于点 fad 平分 bac , fae= caecead , fea= cea=90 o在 fea 和 cea 中,fae= cae ,ae=ae , fea

19、= cea 图 24 fea cea ace= afe afe= b+ecd , ace= b+ecd(3)利用角的平分线构造等腰三角形如图 25,在 abc 中, ad 平分 bac ,过点 d 作deab ,de 交 ac 于点 e易证 aed 是等腰三角形因此,我们可以过角平分线上一点作角的一边的平行线,构造等腰三角形图 25 例 11 如图 26,在 abc 中, ab=ac ,bd 平分 abc ,de bd 于d,交 bc 于点 e求证: cd=21be分析:要证cd=21be,可将be 分成两条线段,然后再证明cd 与这两条线段都相等证明:过点d 作 dfab 交 bc 于点 f

20、bd 平分 abc , 1=2dfab , 1=3, 4=abc 图 26 2=3, df=bf debd , 2+def=90 o, 3+5=90o def= 5 df=ef ab=ac , abc= c 4=c,cd=df cd=ef=bf ,即 cd=21be练习: 1如图 27,在 abc 中, b=90o,ad 为 bac 的平分线, df ac 于 f, de=dc求证: be=cf 图 27 2已知:如图28, ad 是 abc 的中线,deab 于 e,dfac 于 f,且 be=cf 求证: ( 1)ad 是 bac 的平分线;( 2)ab=ac 图 28 3在 abc 中, bac=60 o, c=40o,cbadcebadcbad4321cebadfcebadcebadcbadacbdacfebmda

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论