因式分解公式大全_第1页
因式分解公式大全_第2页
因式分解公式大全_第3页
因式分解公式大全_第4页
因式分解公式大全_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、公式及方法大全待定系数法(因式分解)待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分 解成某几个因式,但这几个因式中的某些系数尚未确定,这 时可以用一些字母来表示待定的系数.由于该多项式等于这 几个因式的乘积,根据多项式恒等的性质,两边对应项系数 应该相等,或取多项式中原有字母的几个特殊值,列出关于 待定系数的方程(或方程组),解出待定字母系数的值,这种 因式分解的方法叫作待定系数法.常用的因式分解公式:(“窗)匕+切=F +B)x+必(a±A)a = a2 + 2ab+b2(a±b)z =

2、a3±3a2b + 3ab2±bza2 -b2 = (a-b)(a+b)dt3 +i3 = 0 ±3)(# 干必 + 沪)於-胪二严+住叫+严沪+必山+严)伪为正整数) +轨严-广+广即-十严-円)©为偶数)d +护=+切(旷1-<3叫)+旷护沪 +尸)(讯为奇数)S+b + c)'二 a1 + 沪 +/ +2必+2弘+ 2皿+ J3 4-c'1 -3abc = (a +b +c)(a2 +i2 +(? -ab-bc-ca)例 1 分解因式:x2+3xy+2y 2+4x+5y+3.分析由于(x2+3xy+2y 2)=(x+2y)(x

3、+y),若原式可以分解因式,那么它的两个一次项一定是 x+2y+m 和x+y+n的形式,应用待定系数法即可求出 n,使问题得到解决.解设x2+3xy+2y 2+4x+5y+3 =(x+2y+m)(x+y+n) =x 2 +3xy+2y 2+(m+n)x+(m+2n)y+mn 比较两边对应项的系数,则有解之得m=3 , n=1 .所以原式=(x+2y+3)(x+y+1).说明 本题也可用 双十字相乘法,请同学们自己解一下.例 2 分解因式:x4-2x 3-27x 2-44x+7 .分析本题所给的是一元整系数多项式,根据前面讲过 的求根法,若原式有有理根,则只可能是土 1 , ±7(7的

4、约数), 经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ ax+b)(x 2+cx+d)的形式.解设原式=(x 2+ax+b)(x 2+cx+d)=x4+(a+c)x 3+(b+d+ac)x 2+(ad+bc)x+bd ,所以有由bd=7,先考虑 b=1 , d=7 有所以 原式=(x 2-7x+1)(x 2+5x+7)说明 由于因式分解的唯一性,所以对 b=-1 , d=-7等 可以不加以考虑.本题如果b=1 , d=7代入方程组后,无法 确定a,c的值,就必须将bd=7的其他解代入方程组,直 到求出待定系数为止.本题没有一次因式,因而无

5、法运用求根法分解因式.但 利用待定系数法,使我们找到了二次因式.由此可见,待定 系数法在因式分解中也有用武之地.求根法(因式分解)我们把形如anxn+an-1xn-1+-+a1x+a0(n为非负整数)的代数式称为关于 x的一元多项式,并用f(x) , g(x), 等记号表示,女口f(x)=x2-3x+2, g(x)=x5+x2+6,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式 f(x) f(1)=12-3 x我们把形如anxn+a n-i xn-1 +玄ix+a o(n为非负整数)的 代数式称为关于x的一元多项式,并用f(x) , g(x),等记号 表示,如f(x)=x 2-

6、3x+2 , g(x)=x 5+x2+6,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=1 2-3 xi+2=0 ;f(-2)=(-2) 2-3 X(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理)若a是一元多项式f(x)的根,即 f(a)=0成立,则多项式f(x)有一个因式x-a .根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式 f(x)的系数都是整数时, 即整系数多项式时,经常用下面的定理来判定它是否有有理 根.定理2的根,则

7、必有p是ao的约数,q是an的约数.特别地, 当ao=1时,整系数多项式f(x)的整数根均为an的约数.我们根据上述定理,用求多项式的根来确定多项式的一 次因式,从而对多项式进行因式分解.例2分解因式:x3-4x2+6x-4分析 这是一个整系数一元多项式,原式若有整数根,必是 -4 的约数,逐个检验 -4 的约数:± 1 ,±2 ,±4 ,只有f(2)=2 3-4 X22+6 X2-4=0 ,即 x=2 是原式的一个根,所以根据定理1,原式必有因式 x-2 解法 1 用分组分解法,使每组都有因式 (x-2) 原式=(x 3-2x 2)-(2x 2-4x)+(2x-

8、4)=x 2(x-2)-2x(x-2)+2(x-2)=(x-2)(x 2-2x+2) 解法 2 用多项式除法,将原式除以 (x-2) ,所以原式 =(x-2)(x 2-2x+2)说明 在上述解法中,特别要注意的是多项式的有理根 一定是 -4 的约数,反之不成立,即 -4 的约数不一定是多项 式的根因此,必须对 -4 的约数逐个代入多项式进行验证例 3 分解因式: 9x4-3x3+7x 2-3x-2 分析 因为9的约数有土 1 , ±3 , ±9; -2的约数有土 1 ,为:所以,原式有因式 9x2-3x-2 .解 9x4-3x 3+7x 2-3x-2=9x 4-3x3-2x

9、2+9x2-3x-2=x 2(9x3-3x-2)+9x 2-3x-2=(9x 2-3x-2)(x 2+1)=(3x+1)(3x-2)(x2+1)说明 若整系数多项式有 分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.双十字相乘法(因式分解)分解二次三项式时,我们常用十字相乘法.对于某些二 元二次六项式(ax2+bxy+cy2+dx+ey+f

10、),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幕排列,并把y当作常数,于是上式可变形为2x2-( 5+7y)x-(22y2-35y+3), 可分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy 2+dx+ey+f),我们也可以用十 字相乘法分解因式.例如,分解因式2x2-7xy-22y 2-5x+35y-3.我们将上式按x降幕排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法

11、,分解为即-22y 2+35y-3=(2y-3)(-11y+1)再利用十字相乘法对关于 x 的二次三项式分解所以原式= x+(2y-3) 2x+(-11y+1) =(x+2y-3)(2x-11y+1) 上述因式分解的过程,实施了两次十字相乘法如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x 2-7xy-22y 2;(x-3)(2x+1)=2x 2 -5x-3 ;(2y-3)(-11y+1)=-22y2+35y-3 这就是所谓的 双十字相乘法 用双十字相乘法对多项式 ax 2+bxy+cy 2+dx+ey+f 进行因式分解的步骤是

12、:(1) 用十字相乘法分解 ax 2 +bxy+cy 2,得到一个十字相乘图(有两列 );(2) 把常数项 f 分解成两个因式填在第三列上, 要求第二、第三列构成的十字交叉之积的和等于原式中的ey ,第一、第三列构成的十字交叉之积的和等于原式中的dx 例 1 分解因式:(1) x 2-3xy-10y 2+x+9y-2 ;(2) x 2-y 2+5x+3y+4 ;(3) xy+y 2+x-y-2 ;(4) 6x 2- 7xy-3y 2-xz+7yz-2z 2解 (1)原式 =(x-5y+2)(x+2y-1) (2)原式 =(x+y+1)(x-y+4) (3) 原式中缺 x2 项,可把这一项的系数

13、看成 0 来分解原式 =(y+1)(x+y-2) (4)原式 =(2x-3y+z)(3x+y-2z) 说明 (4) 中有三个字母,解法仍与前面的类似笔算开平方对于一个数的开方,可以不用计算机,也不用查表,直 接笔算出来,下面通过一个例子来说明如何笔算开平方,对 于其它数只需模仿即可例 求 316.4841 的平方根 .第一步 ,先将被开方的数, 从小数点位置向左右每隔两位用逗号,分段,如把数 316.4841 分段成 3,16.48,41.第二步,找出第一段数字的初商,使初商的平方不超过第一段数字,而初商加 1 的平方则大于第一段数字,本例中第一 段数字为 3,初商为 1,因为 12=1<

14、;3 ,而 (1+1)2=4>3.第三步, 用第一段数字减去初商的平方, 并移下第二段数字,组成第一余数,在本例中第一余数为 216.第四步,找出试商,使(20 x初商+试商)x试商不超过第一余 数,而【20 x初商+(试商+1)】x(试商+1)则大于第一余数 第五步,把第一余数减去(20 x初商+试商)x试商,并移下第 三段数字,组成第二余数,本例中试商为7,第二余数为2748. 依此法继续做下去,直到移完所有的段数,若最后余数为零, 则开方运算告结束.若余数永远不为零,则只能取某一精度的 近似值.第六步,定小数点位置,平方根小数点位置应与被开方数的小数点位置对齐.本例的算式如下:17

15、.793,16 .48,41120 X 1 = 20216第一余数十72718927X720X17 = 3402748 -第二余数+73472429 347X720X177 = 3540319 41 第余数+93549 3 19 413549X90根式的概念【方根与根式】 数a的n次方根是指求一个 数,它的n次 方恰好等于a.a的n次方根记为 (n为大于1的自然数).作 为代数式称为根式.n称为根指数,a称为根底数.在实数 范围内,负数不能开偶次方,一个正数开偶次方有两个方根, 其绝对值相同,符号相反.【算术根】 正数的正方根称为算术根.零的算术根规定为零.【基本性质】 由方根的定义,有(烷y

16、 “畅国根式运算【乘积的方根】乘积的方根等于各因子同次方根的乘积;反过来,同次方根的乘积等于乘积的同次方根,即【分式的方根】 分式的方根等于分子、分母同次方根相除,即【根式的乘方】5一":>0)【根式化简】/c +("运 + “罷)Jb 4-/hct b(C + -/d(QOQM工切 >0,d R)(亦+而x亦-亦)_(丘+ 7?)(亦-亦) (-7 + .岳 馬、ct b(a > QQ > O,a 工 b&>0,d >0)【同类根式及其加减运算】 根指数和根底数都相同的根式 称为同类根式,只有同类根式才可用加减运算加以合并 .国

17、进位制的基与数字任一正数可表为通常意义下的有限小数或无限小数,各数字 的值与数字所在的位置有关,任何位置的数字当小数点向右 移一位时其值扩大10倍,当小数点向左移一位时其值缩小 10倍例如173.246 = lxlOa+7xlO+3+2xlO-1+4xlO-a+6xlO-5一般地,任一正数 a可表为a = aA'aiaQa-ia-2=xlO*10小 +- + 1xlO + l3o+ u_j x 10 i + a_2 xlO ' + 这就是10进数,记作a(10),数10称为进位制的基,式中 ai在0,1,2丄,9中取值,称为10进数的数字,显然没有理由 说进位制的基不可以取其他

18、的数 现在取q为任意大于1的 正整数当作进位制的基,于是就得到q进数表示°二Q严囲W-xa-2二诃+吗今+州+知g “ + a眞+(1)式中数字ai在0,1,2,,q-1中取值,anan-1aao称为q进数a(q)的整数部分,记作a(q);a-1a-2 .称为a(q)的分数部分,记作a(q).常用进位制,除10进制外,还有2进制、8进制、16进制等,其数字如下2进制0, 18 进制 0, 1,2, 3, 4, 5, 6, 716 进制 0, 1,2, 3, 4, 5, 6, 7, 8, 90,12,3,4/各种进位制的相互转换1 q -10转换 适用通常的10进数四则运算规则,根据公

19、式 ,可以把q进数a(q)转换为10进数表示例如743(6, =7x8a+4x8+3 = 448+32 + 3483(1011.101(2)=1x23+0x22 +1x2 + 1+1x2+0x2"°+1x2=11.625 2 10 q转换转换时必须分为 整数部分和分数部分进行. 对于整数部分其步骤是:(1) 用q去除a(10),得到商和余数.(2) 记下余数作为q进数的最后一个数字. 用商替换a(10)的位置重复 和(2)两步,直到商等于零 为止.对于分数部分其步骤是:(1) 用 q 去乘a(10).(2) 记下乘积的整数部分作为 q进数的分数部分第一个数字. 用乘积的分数

20、部分替换a(10)的位置,重复和两步,直到乘积变为整数为止,或直到所需要的位数为止例如:103.118(10)=147.074324(8)整数部分的 分数部分的草式草式J 18 83AA8103 | 717,5523 p q转换 通常情况下其步骤是:a(p) a(10)宀a(q).如果 p,q是同一数s的不同次幂,其步骤是:a(p) a(s) a(q). 例如,8进数127.653(8)转换为16进数时,由于 8=23, 16=24,所以s=2,其步骤是:首先把 8进数的每个数字根 据8-2转换表转换为2进数(三位一组)127.653(8)=001 010 111.110 101 011(2)

21、然后把2进数的所有数字从小数点起(左和右)每四位一组分组,从16-2转换表中逐个记下对应的16进数的数字,即 127.653(8)=0101 0111 1101 0101 lOOOp)= 57.358(10)正多边形各量换算公式n为边数R为外接圆半径 a为边长 燎为内切圆半径为圆心角S为多边形面积重心 G与外接圆心0重合正多边形各量换算公式表各量正三角形n为边数R为外接圆半径a为边长燎为内切圆半径_ 360八必为圆心角I ”丿S为多边形面积重心G与外接圆心O重合正多边形各量换算公式表各量正三角正方形正五边形正六边形正n边形形图形A/, / “ 10厂K jS43矽2,扌十1Q屈?a2並22毎-

22、i?2 sin at22 a nr tan 2a42R-710-25 A2R2 应 sin 2Ra3V2 a2aw苗a61 a2需a2aa cot 22或许你还对作图感兴趣:正多边形作图所谓初等几何作图问题, 是指使用无刻度的直尺和圆规 来作图.若使用尺规有限次能作出几何图形,则称为作图可 能,或者说欧几里得作图法是可能的,否则称为作图不可能很多平面图形可以用直尺和圆规作出,例如上面列举的正五边形、正六边形、正八边形、正十边形等 .而另一些就不 能作出,例如正七边形、正九边形、正十一边形等,这些多 边形只能用近似作图法如何判断哪些作图可能, 哪些作图不 可能呢?直到百余年前,用代数的方法彻底地

23、解决了这个问 题,即给出一个关于尺规作图可能性的准则:作图可能的充 分必要条件是,这个作图问题中必需求出的未知量能够由若干已知量经过有限次有理运算及开平方运算而算出几千年来许多数学家耗费了不少的精力,企图解决所谓“几何三大 问题”:立方倍积问题,即作一个立方体,使它的体积二倍于一 已知立方体的体积.三等分角问题,即三等分一已知角 .化圆为方问题,即作一正方形,使它的面积等于一已知 圆的面积.后来已严格证明了这三个问题不能用尺规作图.代数式的求值 代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题, 往往需要利用乘法公式、绝对值与算术根的性质、

24、分式的基 本性质、通分、求值中的方法技巧主要是代数式恒等变形的技能、技巧 和方法.下面结合例题逐一介绍.1 .利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析x的值是通过一个一元二次方程给出的,若解出 x 后,再求值,将会很麻烦.我们可以先将所求的代数式变形, 看一看能否利用已知条件.解已知条件可变形为 3x2+3x-仁0 ,所以6x4+15x 3+10x 2=(6x 4+6x 3-2x 2)+(9x 3+9x 2-3x)+(3x 2+3x-1)+1=(3x 2+3x-1)(2z 2+3x+1)+1=0+1=1说明 在求代数式的值时,若已知的是一个或几

25、个代数 式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入, 会使问题得到简捷的解答.例2已知a,b,c为实数,且满足下式:a2+b 2+ c2=1,求a+b+c 的值.解 将式因式分解变形如下即所以a+b+c=0 或 bc+ac+ab=0 .若 bc+ac+ab=0,贝U(a+b+c) 2=a 2+b 2+c 2+2(bc+ac+ab)=a 2+b 2+c 2=1 ,所以a+b+c= ±1 .所以a+b+c 的值为0, 1 , -1 .说明 本题也可以用如下方法对式变形:前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1

26、 ,最终都是将式变形为两个式子之积等于零的形 式.2 .利用乘法公式求值例 3 已知 x+y=m , x3+y 3=n , m T,求 x2+ y2 的值. 解因为x+y=m ,所以m 3=(x+y) 3=x 3+y 3+3xy(x+y)=n+3my ,所以求 x2+6xy+y 2 的值.分析 将x , y的值直接代入计算较繁,观察发现,已知中x ,的值正好是一对共轭 无理数,所以很容易计算出x+y 与xy的值,由此得到以下解法.解 x2+6xy+y 2=x2 +2xy+y 2+4xy2=(x+y) +4xy3 .设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有 时可增设一

27、些 参数(也叫辅助 未知数),以便沟通数量关系, 这叫作设参数法.有时也可把代数式中某一部分式子,用另 外的一个字母来替换,这叫换元法.分析 本题的已知条件是以连比形式出现,可引入参数 k,用它表示连比的比值,以便把它们分割成几个等式.x = (a-b)k , y = (b-c)k , z = (c-a)k . 所以x+y+z=(a-b)k + (b-c)k+(c-a)k=0 u+v+w=1,由有把两边平方得u2+v 2+w 2+2(uv+vw+wu)=1 所以 u2+v 2+w 2=1 , 即两边平方有所以4 .利用非负数的性质求值若几个非负数的和为零,贝U每个非负数都为零,这个性 质在代数式求值中经常被

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论