福建省GDP及相关因素计量分析_第1页
福建省GDP及相关因素计量分析_第2页
福建省GDP及相关因素计量分析_第3页
福建省GDP及相关因素计量分析_第4页
福建省GDP及相关因素计量分析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、福建省gdp及相关因素计量分析摘要文章探讨了福建省gdp的影响因素根据gdp的计算公式,选取 居民人均消费支出等5个指标作为解释变量.首先进行线性回归,作 多重共线性诊断;其次釆用向后回归法筛选通过显著性检验的变量作 为新变量;紧接着标准化新变量和因变量,做主成分分析,提取主成分. 再者将主成分和标准化的因变量进行线性回归,构建模型,得出方程, 并对方程进行检验最后根据模型,提出对gdp增长的相关建议.关键词:gdp影响因素;线性回归;主成分分析;标准化1. 引言gdp是指在划定的一段时间内,某个国家或地区产出的一切最 终产品和劳务价值,是用来衡量经济发展水平不可或缺的指标之一. 了解gdp的

2、走向能帮助我们更好地把握经济发展的格局,制定更为合 适的宏观经济政策;利用gdp可以分析近阶段经济发展的趋势,以便 更好地规划投资组合.自改革开放以来,我国经济发展呈现喜人势头, 尤其是加入wto以来,gdp更是如同雨后的春笋般节节攀升.目前国际上用来衡量gdp的核算方法包括三种,分别是工产 法、收入法、支出法这就造成学者对gdp的研究方法各不相同,由此 选择用来实证分析的变量也各不相同文1从国民经济核算支出法 的角度,挑选出影响我国国内生产总值的六个因素并细化柯布一一道 格拉斯生产函数,利用spss将其线性化后拟合岀较好的gdp模型.文 2虽然也是在支出法的基础上进行研究得到回归方程,但采用

3、的分 析软件有所不同,通过eviews软件对构建的模型进行ols参数估计, 得到模型的数学方程文3则直接选取多个变量采用灰色关联度组 合分析方法对中国经济增长的影响因素进行实证分析,建立灰色预测 模型.从福建省近年来gdp数值可以看出,福建省的经济发展正以 稳步渐进的步伐顺着时间轴迈步向前在借鉴已有研究方法的基础上, 本文研究福建省gdp及相关因素的关系本文选择支出法作为gdp的 衡量方法,并据此选取代表消费、投资、净岀口的相关指标,利用spss 统计软件,通过主成分回归方法,提取主成分并进行回归,构建经济模 型,以求得到较为准确的gdp影响因素回归模型,用于预测未来经济 发展,据此结合当今经

4、济形势,提出相应建议.2. 数据选取及预处理通过阅读经济学的相关知识,我们可以得知,平时所提的gdp 指的是一定吋期内某国或某地区产出的最终产品及劳务价值:4.gdp 表现为价值形态、收入形态和产品形态三种表现形态分别通过生产 法、收入法和支出法三种核算方法体现,通过不同角度反映国民经济 生产活动成果.生产法中,gdp二劳动者报酬+生产税净额+固定资产折旧+营业 盈余;收入法中,gdp二工资+利息+利润+租金+间接税和企业转移支付 +折旧;支出法中,其中c为居民消费,1为企业投资,g为政府购买, 为净出口 (x表示出口,m表示进口).由于gdp支出法核算指标是消费,投资和出口,这三者常被比 喻

5、成拉动gdp增长的“三驾马车”,是经济增长原理的生动表述此 外支出法相对另外两种核算方法,选取的核算指标数量较少且指标较 容易在统计年鉴等统计材料中找到.因此综合考虑各种因素,本文选 取支出法作为gdp的核算方法.本文所有数据来自于文5福建统计年鉴-2013,保证其真实有效,文中选取了 2000-2012年的数据进行实证分析.根据支出法的计算公式,确定影响gdp的因素应该为居民消 费c,企业投资i,政府购买g以及净出口居民消费c的指标选取,选择居民人均消费支出作为变量但 福建省统计年鉴中将居民人均消费支出分为城镇居民和农民区别衡 量.因此本文借鉴文6对居民人均可支配收入处理方法,通过人口比 重

6、进行加权求和得到.而企业投资i,根据其定义,企业投资包括固定资产投资和存 货投资两大类,因此选择全社会固定资产投资额作为变量.政府购买g指各级政府购买商晶和劳务的支出,因此选择用 公共财政支岀作为衡量变量另外,由于福建省统计年鉴里有直观的 净岀口总额,直接将其作为衡量变量.据此将gdp作为被解释变量,命名为,将居民人均消费支出、 全社会固定资产投资额、公共财政支出、净出口总额分别命名为,, 作为被解释变量,进行相关计量分析具体数据如下:表1原始数据表年份gdp (亿元)居民人均消费支出(元) 全社会固定资产投资额(万元)公共财政支出(亿元)净出口总额(万元)20003764.543766. 1

7、81082.47324. 18380. 2320014072.854006. 141134.48373. 19432. 0020024467. 554388.851230.76397. 56525. 0720034983. 674809.741507.87452. 30574. 3220045763. 355382.161899.10516.68932. 2020056554. 695894. 972344. 73593. 071251.0920067583. 856575. 163115.08728.701565. 3020079248.537462. 974321. 74910.64193

8、3.702008 10823.01 8573. 66 5301.691137. 72 2025. 382009 12236. 53 9351. 59 6362. 031411.821843. 60201014737. 1210780. 898273. 421695.09 2315.57201117560.1812420.7210119.472198.182722.59201219701. 7814071.8412709.662607. 502507. 783. 模型基本原理3.1多元线性回归模型世间万物总有联系,万物相互联系制约是亘古不变的自然规 律.譬如,经济发展总是与某儿个经济变量紧密关联

9、,被选为经济发展 “代表发言人”的gdp自然与居民人均消费支出、全社会固定资产投 资额、公共财政支岀、净岀口总额有着密不可分的关联.由此,拥有好 奇心的人们总是会试图研究万物间的联系在金融领域,人们更倾向 于依据经济理论,针对某些具体经济现象,从定性角度来研究经济问 题中各因素间的因果关系,回归模型也就应运而生.然而很多情况下,一果往往有多因换句话说,在很多模型中, 因变量的变化信息是无法通过一个自变量被完全解释,往往需要多个 自变量通常,我们选择一个被解释变量(经济学上称之为“内生变 量”)往往需要选取多个解释变量(经济学上称之为“外生变量”), 此时建立起的经济模型就称多元回归模型其中最为

10、简单的就是多元 线性回归模型形式如下:式中称为线性方程的斜率,表示第i个样本在第j个自变量上的取值.表示第j个回归系数的值,称为方程的随机误差引入矩阵记号描述:则上述公式可写为:3.2回归模型检验确定回归模型过程中,须对所建方程进行检验,通过检验一方而用以证明变量间关系是否合理,另一方而用以说明变量间关系是否 统计显著.只有通过检验的方程才能用于变量关系的说明和因变量的 预测其中最关键的是对模型的未知参数进行估计,多元线性冋归模 型的参数估计方法采用最小二乘法(ols) .spss进行多元线性回归 分析时会自动计算参数的估计值.检验i般是统计检验和模型经济意义检验统计检验其实是 显著性检验,主

11、要包括:拟合优度检验、模型方程显著性检验、系数 显著性检验和残羌分析等.3.3多重共线性问题多元线性回归的假设条件最重要的一条是自变量不相关然而,结果不仅和原因共同构成一个整体,并且这个整体中的原因之间 也彼此存在关联和牵制例如,研究gdp影响因素时,选取居民人均消 费支出、全社会固定资产投资额、公共财政支出、净出口总额作为核 算指标,但四个变量显然存在相互影响又比如居民人均消费支出与 公共财政支出必然有着联系,政府通过加大公共财政支出保障民生, 人民的生活有了一定保障基础后由此催生消费欲望,人均消费因此大 幅提高而这种由于所选取的多个自变量之间存在线性相关而引发的 问题称为多重共线性问题.多

12、重共线性问题将会导致普通最小二乘法(ols)无法估计,由此带来连锁反应,导致检验无法通过,最终将使得模型不可用这是因为参数估计是以公式作为计算依据.当矩阵中的量完全相关时,数据矩阵会发生奇异,从而无法求 解矩阵的逆,也就无法求得另外,当自变量间存在近似线性关系时, 则导致矩阵的列向量近似线性关系,从而数据矩阵接近奇异,由此ols 估计的精度变得很差这是因为假设那么回归系数的最小估计的均方误差(mse)将会趋于无穷大,由此导致对于某一变量的回归 系数的方差也会变得很大,从而影响回归系数估计值的稳定性,使其 变得很差.此外,又因为t统计量的计算公式由于方差的不断变大,t统计量相应变得很小,导致t检

13、验无法通过.总之,多重共线性将使得多元线性回归模型失去准确性,对整 个模型产生无可估量的影响.概括起来有以下几点:(1)导致回归系数 估计不准确,模型失去经济意义;(2)导致回归的残差平方和被放大, 使得模型方差的估计不偏大;(3)导致许多变量不能通过参数显著性 检验,使得拟合模型的变量数与真实变量数不符.3.4主成分回归方法那么如何解决多重共线性呢?近年来许多学者相继提出多种 改善修正方法大致有如下方法:(1)剔除一些解释变量;(2)增加样 本容量;(3)主成分回归;(4)岭回归其中本文主要讨论主成分回归 方法.主成分回归是将主成分分析和回归两种方法相结合具体步 骤如下:先将被解释变量y和所

14、有解释变量进行回归,筛选出p个有 统计意义的解释变量;然后将p个解释变量标准化作主成分分析,选 出q个主成分(主成分是互不相关的);再用这q个主成分作为解释 变量,进行回归分析,构建模型;最后把冋归结果转化为原来p个解释 变量对应变量的回归模型其质是通过降维处理提出主成分以修正其 自变量间自相关问题从而使得模型更加准确.而主成分分析步骤为:(1)标准化自变量和因变量,避免受量 纲影响;(2)求的特征值和标准正交化特征向量;(3)选择主成分最 大特征值对应的特征向量为第一主成分系数,以此类推主成分个数 选取取决于主成分对因变量的解释力度若前n个特征值之和占所有 特征值之和的比例达到一定程度,可以

15、适当剔除对应特征值较小的主 成分;(4)做正交变换得到新的变量.4. 模型构建4. 1共线性诊断我们可以通过spss回归分析中的多重共线性诊断发现多重 共线性程度多重共线性诊断通常是采取以下方法:(1)观察白变量间的相关系数矩阵如果相关系数为0.8以上, 说明自变量间可能会有共线性问题一旦相关系数超过0. 9,那么共线 性问题一定存在.(2) 容忍度(tolerance) 容忍度是指,以每个口变量作为因 变量对其他自变量进行回归分析时得到的残差比例,计算公式为指 标值越小,说明该自变量被其余变量预测越精确,共线性可能就越严 重陈希孺曾指出,可能存在共线性问题的条件是某个自变量的容忍 度小于0.

16、 1.此外方差膨胀因子(vif),即容忍度的倒数,也可用于诊 断多重共线性.(3) 特征根(eigenvalue) 实际上就是对自变量进行主成分 分析,如果相当多维度的特征根等于0,则可能有比较严重的共线性.(4) 条件指数(condition idex) 某些维度该指标值大于 15时,可能存在共线性;大于30则代表存在严重共线性.在spss中,执行命令,将gdp选入dependent栏中,把全部解 释变量放入 independent 栏,method 选择 enter,在 statistics 对话 框,勾选collinearity diangostic,其他为系统默认值,得到表2,表3.表

17、2回归系数和共线性统计量coefficientsacoefficientst sig. collinearity statisticsb std. error betatoleraneevif 0689471 (constant) 49.137719.280居民人均消费支出.599.258.376 2.321 .049.003383.269全社会固定投资总额 .112.242.080 .465 .654 .002436.765公共财政支出 3. 114 1.269 .436 2.453 .040.002462.850净出 口总额 748 288 117 2. 600 032 034 29. 6

18、90a. dependent variable: gdp表3共线性诊断指标col 1inearity diagnosticsamodel dimension eigenvalue condition indexvarianceproportions(constant)居民人均消费支出全社会固定投资总额公共财政支出净出口总额4. 703 1.000 .00.00.00.00.002.265 4.210 .01.00.00.00.003.03112.355.01.00.00.00.194.000100.48319.04.99.62.005.000123.578.80.96.00.38.81a. d

19、ependent vari3bl.e: gdp从表2可知,所有自变量的容忍度均小于0. 1,且其方差膨胀因子都很大,说明它们之间存在很严重的共线性问题.此外,从表3可知,第四个特征值,全社会固定投资总额,公共 财政支出发生了共线性;第五个特征值,居民人均消费支出,公共财政 支出,净出口总额发生了多重共线性.4. 2筛选变量由于自变量间存在严重的共线性问题造成了回归模型不精确. 此时可以考虑筛选变量,舍弃某个或某几个变量.在spss执行命令,将gdp选入dependent栏中,把全部解释变 量放入 independent 栏,method 选择 backward,在 statistics 对话框

20、, 勾选collinearity diangostic,其他为系统默认值,从中筛选出有统 计意义的变量,得到表4,表5.表4模型概述model summarycmodel r r square adjusted r square std error of theestimate2 1.000b.999 .999145.64414a. predictors: (constant),净出口总额,公共财政支出,居民人 均消费支出,全社会固定投资总额b. predictors: (constant),净出口总额,公共财政支出,居民人 均消费支岀c. dependent variable: gdp表5回

21、归系数和共线性统计量coefficientsamodelunstandardized coefficientsstandardizedcoefficients t sig collinearity statistics1 (constant) 49. 137719.280居民人均消费支出599 .258.376 2.321 .049.003383. 269全社会i古i定投资总额.112 .242 .080 .465 .654 .002436.765公共财政支出3.114 1.269 .436 2.453 .040 .002462.850净出 口总额.748.288. 1172.600 .032.034 29.690194 .851.396 2.658 .026.0032 (constant) -115.781 597.812居民人均消费支出.631.237355.596公共财政支出 3.551 .815.498 4.358 .002.005208.937a. dependent variable: gdp从表中可以看出,通过向后回归法,我们筛选出了三个变量, 得到模型2,所留下的变量分别是居民人均消费支出,公共财政支出, 净出口总额这是因为它们的p值都小于0. 05,而全社会固定投资总 额的p

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论