




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、重点中学八年级下学期期中数学试卷两套汇编七附答案解析八年级(下)期中数学试卷一、解答题(共12小题,满分 36 分)1下列计算错误的是()a?= b += c =2 d=22下列各式中最简二次根式为()ab c d3下列各组长度的线段能组成直角三角形的是()aa=2,b=3,c=4 ba=4,b=4,c=5ca=5,b=6,c=7 da=5,b=12,c=134直角三角形一条直角边长为8cm,它所对的角为 30 ,则斜边为()a16 cm b4cm c 12cm d8cm5如图所示,在数轴上点a 所表示的数为 a,则 a 的值为()a1b1cd1+6 一个四边形的三个相邻内角度数依次如下,那么
2、其中是平行四边形的是 ()a88 ,108 ,88b88 ,104 ,108c88 ,92 ,92 d88 ,92 ,887下列命题中是真命题的是()a两边相等的平行四边形是菱形b一组对边平行一组对边相等的四边形是平行四边形c两条对角线相等的平行四边形是矩形d对角线互相垂直且相等的四边形是正方形8如图,已知四边形abcd是平行四边形,下列结论中不正确的是()a当 ab=bc时,它是菱形b当 ac bd时,它是菱形c当 abc=90 时,它是矩形d当 ac=bd时,它是正方形9如图图象反映的过程是:小明从家跑到体育馆,在那里锻炼了阵后又走到新华书店去买书,然后散步走回家,其中表示时间t(分钟)表
3、示小明离家的距离 s(千米),那么小明在体育馆锻炼和在新华书店买书共用去的时间是分钟10下列各曲线中不能表示y 是 x 的函数的是()abcd11如图所示的图形中, 所有的四边形都是正方形, 所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则所有正方形的面积的和是 ()cm2a28 b49 c 98 d14712如图,在矩形 abcd中,ab=3,ad=4,点 p在 ad上,pe ac于 e ,pf bd于 f,则 pe +pf等于()abc d二、认真填一填,把答案写在横线上(本题有6 小题,每题 3 分,共 18 分)13 函数 y=中,自变量 x 的取值范围是 计算()2的结
4、果是 化简的结果是14直角三角形两条直角边的长分别为12 和 5,则斜边上的中线等于15如图,abc中,d、e分别为 ab、ac边上的中点,若 de=6 ,则 bc=16如图,今年的冰雪灾害中,一棵大树在离地面3 米处折断,树的顶端落在离树杆底部 4 米处,那么这棵树折断之前的高度是米17根据如图的程序,计算当输入x=3 时,输出的结果 y=18如图, op=1 ,过 p 作 pp1op且 pp1=1,得 op1=;再过 p1作 p1p2op1且 p1p2=1,得 op2=;又过 p2作 p2p3op2且 p2p3=1,得 op3=2 依此法继续作下去,得=三、解答题( 19,20 题每题 6
5、 分,21,22 题每题 8 分,23,24 每题 9 分)19(6 分)计算:(1)4+;(2)25;(3)(+3)(3)20 (6 分)如图,矩形 abcd的两条对角线 ac 、bd相交于点 o,aod=120 ,ab=2求矩形边 bc的长?21(8 分)如图,?abcd的对角线 ac 、bd相交于点 o,e、f是 ac上的两点,并且 ae=cf ,求证:四边形 bfde是平行四边形22(8 分)如图,将长为2.5 米长的梯子 ab斜靠在墙上, be长 0.7 米(1)求梯子上端到墙的底端e的距离(即 ae的长);(2)如果梯子的顶端a沿墙下滑 0.4 米(即 ac=0.4米),则梯脚 b
6、将外移(即bd长)多少米?23(9 分)如图,已知菱形abcd的对角线相交于点o,延长 ab 至点 e,使be=ab ,连接 ce (1)求证: bd=ec ;(2)若 e=50 ,求 bao的大小24(9 分)已知:如图,在 ?abcd中,e、f 分别为边 ab、cd的中点, bd是对角线, ag db交 cb的延长线于 g(1)求证: ade cbf ;(2)若四边形 bedf是菱形,则四边形 agbd是什么特殊四边形?并证明你的结论四思考题( 15,26 题每题 10 分)25(10 分)观察下列各式及其验证过程:验证:=;验证:=;验证:=;验证:=(1)按照上述两个等式及其验证过程的
7、基本思路,猜想4的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n(n 为任意自然数,且n2)表示的等式,并给出证明26 (10 分) 如图所示,在梯形 abcd中, adbc , b=90 , ad=24cm , bc=26cm ,动点 p从点 a 出发沿 ad 方向向点 d 以 1cm/s 的速度运动,动点q 从点 c开始沿着 cb方向向点 b 以 3cm/s 的速度运动点 p、 q分别从点 a 和点 c同时出发,当其中一点到达端点时,另一点随之停止运动(1)经过多长时间,四边形pqcd是平行四边形?(2)经过多长时间,四边形pqba是矩形?(3)经过多长时间,当pq不平行于 c
8、d时,有 pq=cd 参考答案与试题解析一、解答题(共12小题,满分 36 分)1下列计算错误的是()a?= b += c =2 d=2【考点】 二次根式的混合运算【分析】 利用二次根式的运算方法逐一算出结果,比较得出答案即可【解答】 解:a、?=,计算正确;b、+,不能合并,原题计算错误;c、=2,计算正确;d、=2,计算正确故选: b【点评】此题考查二次根式的运算方法和化简,掌握计算和化简的方法是解决问题的关键2下列各式中最简二次根式为()ab c d【考点】 最简二次根式【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二
9、次根式,否则就不是【解答】 解:a被开方数含分母,故a错误;b被开方数含能开得尽方的因数或因式,故b错误;c被开方数含分母,故c错误;d被开方数不含分母;被开方数不含能开得尽方的因数或因式,故d 正确;故选: d【点评】本题考查最简二次根式的定义根据最简二次根式的定义, 最简二次根式必须满足两个条件: 被开方数不含分母; 被开方数不含能开得尽方的因数或因式3下列各组长度的线段能组成直角三角形的是()aa=2,b=3,c=4 ba=4,b=4,c=5ca=5,b=6,c=7 da=5,b=12,c=13【考点】 勾股定理的逆定理【分析】 根据勾股定理的逆定理: 如果三角形有两边的平方和等于第三边
10、的平方,那么这个三角形是直角三角形 如果没有这种关系, 这个三角形就不是直角三角形【解答】 解:a、22+3242,根据勾股定理的逆定理不是直角三角形,故此选项错误;b、42+4252,根据勾股定理的逆定理不是直角三角形,故此选项错误;c、52+6272,根据勾股定理的逆定理不是直角三角形,故此选项错误;d、52+122=132,根据勾股定理的逆定理是直角三角形,故此选项正确故选: d【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时, 应先认真分析所给边的大小关系, 确定最大边后, 再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断4直角三角形一条直角边长为8cm,它所
11、对的角为 30 ,则斜边为()a16 cm b4cm c 12cm d8cm【考点】 含 30 度角的直角三角形【分析】 根据在直角三角形中, 30 角所对的直角边等于斜边的一半可得答案【解答】 解:直角三角形一条直角边长为8cm,它所对的角为 30 ,斜边为 16cm,故选: a【点评】 此题主要考查了直角三角形的性质,关键是掌握在直角三角形中,30角所对的直角边等于斜边的一半5如图所示,在数轴上点a 所表示的数为 a,则 a 的值为()a1b1cd1+【考点】 勾股定理;实数与数轴【分析】 点 a 在以 o 为圆心, ob长为半径的圆上,所以在直角boc中,根据勾股定理求得圆 o的半径 o
12、a=ob=, 然后由实数与数轴的关系可以求得a的值【解答】 解:如图,点 a 在以 o为圆心, ob长为半径的圆上在直角 boc中, oc=2 , bc=1 , 则根据勾股定理知ob=,oa=ob=,a=1故选 a【点评】 本题考查了勾股定理、实数与数轴找出oa=ob是解题的关键6 一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是 ()a88 ,108 ,88b88 ,104 ,108c88 ,92 ,92 d88 ,92 ,88【考点】 平行四边形的判定【分析】两组对角分别相等的四边形是平行四边形,根据所给的三个角的度数可以求出第四个角,然后根据平行四边形的判定方法验证即可【解
13、答】 解:两组对角分别相等的四边形是平行四边形,故b不是;当三个内角度数依次是88 ,108 ,88 时,第四个角是 76 ,故 a 不是;当三个内角度数依次是88 ,92 ,92 ,第四个角是 88 ,而 c中相等的两个角不是对角故 c错,d 中满足两组对角分别相等,因而是平行四边形故选 d【点评】此题主要考查平行四边形的判定:两组对角分别相等的四边形是平行四边形 注意角的对应的位置关系, 并不是有两组角相等的四边形就是平行四边形,错选 c7下列命题中是真命题的是()a两边相等的平行四边形是菱形b一组对边平行一组对边相等的四边形是平行四边形c两条对角线相等的平行四边形是矩形d对角线互相垂直且
14、相等的四边形是正方形【考点】 命题与定理【分析】 根据菱形的判定方法对a 进行判断;根据平行四边形的判定方法对b进行判断;根据矩形的判定方法对c 进行判断;根据正方形的判定方法对d 进行判断【解答】 解:a、两邻边相等的平行四边形是菱形,所以a选项错误;b、一组对边平行且这组对边相等的四边形是平行四边形,所以b选项错误;c、两条对角线相等的平行四边形是矩形,所以c选项正确;d、对角线互相垂直且相等的平行四边形是正方形,所以d 选项错误故选 c【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题8如图,已知四边形abcd是平行四边形,下列结论中不正确的是()a
15、当 ab=bc时,它是菱形b当 ac bd时,它是菱形c当 abc=90 时,它是矩形d当 ac=bd时,它是正方形【考点】 正方形的判定;平行四边形的性质;菱形的判定;矩形的判定【分析】 根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形【解答】 解:a、根据邻边相等的平行四边形是菱形可知:四边形abcd是平行四边形,当 ab=bc时,它是菱形,故a 选项正确;b、四边形abcd是平行四边形,bo=od , acbd, ab2=bo2+ao2,ad2=do2+ao2,ab=ad ,四边形 abcd是菱形,故 b
16、选项正确;c、有一个角是直角的平行四边形是矩形,故c选项正确;d、根据对角线相等的平行四边形是矩形可知当ac=bd时,它是矩形,不是正方形,故 d 选项错误;综上所述,符合题意是d 选项;故选: d【点评】此题主要考查学生对正方形的判定、平行四边形的性质、 菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错9如图图象反映的过程是:小明从家跑到体育馆,在那里锻炼了阵后又走到新华书店去买书,然后散步走回家,其中表示时间t(分钟)表示小明离家的距离 s (千米), 那么小明在体育馆锻炼和在新华书店买书共用去的时间是50分钟【考点】 函数的图象【分析】依题意,根据函数图象可
17、知, 在体育馆锻炼和在新华书店买书这两段时间内路程没有变化,易求时间【解答】 解:在体育馆锻炼和在新华书店买书这两段时间内,路程都没有变化,即与 x 轴平行,那么他共用去的时间是(3515)+(8050)=50 分故答案为: 50【点评】本题主要考查了函数的图象,读懂图意,理解时间增多,路程没有变化的函数图象是与 x 轴平行是解决本题的关键10下列各曲线中不能表示y 是 x 的函数的是()abcd【考点】 函数的概念【分析】在坐标系中,对于 x 的取值范围内的任意一点, 通过这点作 x 轴的垂线,则垂线与图形只有一个交点根据定义即可判断【解答】 解:显然 a、c、d 三选项中,对于自变量x 的
18、任何值, y 都有唯一的值与之相对应, y 是 x 的函数;b、对于 x0 的任何值, y 都有二个值与之相对应,则y 不是 x 的函数;故选: b【点评】本题主要考查了函数的定义, 在定义中特别要注意, 对于 x 的每一个值,y 都有唯一的值与其对应11如图所示的图形中, 所有的四边形都是正方形, 所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则所有正方形的面积的和是 ()cm2a28 b49 c 98 d147【考点】 勾股定理【分析】根据正方形的面积公式, 连续运用勾股定理, 利用四个小正方形的面积和等于最大正方形的面积进而求出即可【解答】 解:所有的三角形都是直角三角形,
19、所有的四边形都是正方形,正方形 a 的面积 =a2,正方形 b的面积 =b2,正方形 c的面积 =c2,正方形 d 的面积 =d2,又a2+b2=x2,c2+d2=y2,正方形 a、b、c、d的面积和 =(a2+b2)+(c2+d2)=x2+y2=72=49(cm2),则所有正方形的面积的和是:493=147(cm2)故选: d【点评】本题主要了勾股定理, 根据数形结合得出正方形之间面积关系是解题关键12如图,在矩形 abcd中,ab=3,ad=4,点 p在 ad上,pe ac于 e ,pf bd于 f,则 pe +pf等于()abc d【考点】 矩形的性质;三角形的面积;勾股定理【分析】 连
20、接 op ,过 d 作 dmac于 m,求出 ac长,根据三角形的面积公式求出 cm 的值,根据 saod=sapo+sdpo代入求出 pe +pf=dm即可【解答】 解:连接 op,过 d作 dmac于 m,四边形 abcd是矩形,ao=oc= ac,od=ob= bd,ac=bd ,adc=90 oa=od ,由勾股定理得: ac=5,sadc=34=5dm,dm=,saod=sapo+sdpo,(aodm)=(aope )+ (dopf ),即 pe +pf=dm=,故选 b【点评】本题考查了矩形的性质、三角形的面积公式、勾股定理的应用,关键是求出 pe +pf=dm 二、认真填一填,把
21、答案写在横线上(本题有6 小题,每题 3 分,共 18 分)13函数 y=中,自变量 x 的取值范围是x2计算()2的结果是2化简的结果是y【考点】 函数自变量的取值范围【分析】 根据分母不等于 0 即可得;由二次根式的性质可得;分母有理化可得【解答】 解:函数 y=中,x20,x2;()2=2;=y;故答案为: x2,2,y【点评】本题主要考查函数自变量的取值范围、二次根式的性质与化简, 熟练掌握常见函数自变量取值范围确定及二次根式的性质是关键14直角三角形两条直角边的长分别为12 和 5,则斜边上的中线等于6.5【考点】 勾股定理;直角三角形斜边上的中线【分析】利用勾股定理求得直角三角形的
22、斜边,然后利用直角三角形斜边上的中线等于斜边的一半解题【解答】 解:如图,在 abc中, c=90 ,ac=12 ,bc=5 ,则根据勾股定理知, ab=13,cd为斜边 ab上的中线,cd= ab=6.5故答案为: 6.5【点评】本题考查了勾股定理、直角三角形斜边上的中线勾股定理:如果直角三角形两直角边分别为a,b,斜边为 c,那么 a2+b2=c2即直角三角形,两直角边的平方和等于斜边的平方 直角三角形的性质: 在直角三角形中斜边上的中线等于斜边的一半15如图,abc中,d、e分别为 ab、ac边上的中点,若 de=6 ,则 bc=12【考点】 三角形中位线定理【分析】 由于 d、e分别为
23、 ab、ac边上的中点,那么de是abc的中位线,根据三角形中位线定理可求bc 【解答】 解:如图所示,d、e分别为 ab、ac边上的中点,de是abc的中位线,de= bc ,bc=12 故答案是 12【点评】 本题考查了三角形中位线定理三角形的中位线等于第三边的一半16如图,今年的冰雪灾害中,一棵大树在离地面3 米处折断,树的顶端落在离树杆底部 4 米处,那么这棵树折断之前的高度是8米【考点】 勾股定理的应用【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理直接解答即可求出斜边【解答】 解: ac=4米,bc=3米, acb=90 ,折断的部分长为=5,折断前高度为 5+3=8
24、(米)【点评】 此题主要考查学生对勾股定理在实际生活中的运用能力17根据如图的程序,计算当输入x=3 时,输出的结果 y=2【考点】 代数式求值【分析】 先由 x=31,确定 x 与 y 的关系式为 y=x+5,然后代值计算即可【解答】 解: x=31,y=x+5=3+5=2故答案为 2【点评】本题考查了代数式求值: 把满足题意的字母的值代入代数式,然后进行实数运算即可18如图, op=1 ,过 p 作 pp1op且 pp1=1,得 op1=;再过 p1作 p1p2op1且 p1p2=1,得 op2=;又过 p2作 p2p3op2且 p2p3=1,得 op3=2 依此法继续作下去,得=【考点】
25、 勾股定理【分析】根据勾股定理分别列式计算,然后根据被开方数的变化规律解答,再根据三角形的面积公式即可求解【解答】 解: op=1 ,op1=,op2=,op3=2,op4=, ,op2014=,=1=故答案为:【点评】本题考查了勾股定理, 读懂题目信息, 理解定理并观察出被开方数比相应的序数大 1 是解题的关键,同时考查了三角形的面积三、解答题( 19,20 题每题 6 分,21,22 题每题 8 分,23,24 每题 9 分)19计算:(1)4+;(2)25;(3)(+3)(3)【考点】 二次根式的混合运算【分析】 (1)先化简二次根式,再合并同类二次根式(2)根据二次根式的乘除法则化简计
26、算即可(3)利用平方差公式计算即可【解答】 解:( 1)原式 =4+32=5(2)原式 =2=(3)原式 =()232=7【点评】本题考查二次根式的混合运算,乘法公式等知识, 解题的关键是熟练掌握二次根式的化简以及混合运算法则,属于中考常考题型20如图,矩形 abcd的两条对角线 ac 、bd相交于点 o,aod=120 ,ab=2 求矩形边 bc的长?【考点】 矩形的性质【分析】 根据矩形的对角线互相平分且相等可得oa=ob= ac ,根据邻补角的定义求出 aob ,然后判断出 aob 是等边三角形,根据等边三角形的性质可得oa=ab ,然后求出 ac ,再用勾股定理即可【解答】 解:在矩形
27、 abcd中,oa=ob= ac ,aod=120 ,aob=180 aod=180 120 =60 ,aob是等边三角形,oa=ab=2 ,ac=2oa=2 2=4在 rtabc中,根据勾股定理得, bc=2【点评】本题考查了矩形的性质,等边三角形的判定与性质,勾股定理,熟记矩形的对角线互相平分且相等是解题的关键21 如图, ?abcd的对角线 ac、 bd相交于点 o, e、 f是 ac上的两点,并且 ae=cf ,求证:四边形 bfde是平行四边形【考点】 平行四边形的判定与性质【分析】 首先利用平行四边形的性质,得出对角线互相平分,进而得出eo=fo ,bo=do ,即可得出答案【解答
28、】 证明: ?abcd的对角线 ac、bd相交于点 o,e、f是 ac上的两点,ao=co ,bo=do ,ae=cf ,af=ec ,则 fo=eo ,四边形 bfde是平行四边形【点评】 此题主要考查了平行四边形的判定与性质,得出fo=eo是解题关键22如图,将长为 2.5 米长的梯子 ab斜靠在墙上, be长 0.7 米(1)求梯子上端到墙的底端e的距离(即 ae的长);(2)如果梯子的顶端a沿墙下滑 0.4 米(即 ac=0.4米),则梯脚 b将外移(即bd长)多少米?【考点】 勾股定理的应用【分析】 (1)在 rtabe中利用勾股定理求出ac的长即可;(2) 首先在 rtcde中利用
29、勾股定理求出de的长, 然后再计算出 db的长即可【解答】 解:( 1)由题意得: ab=2.5米,be=0.7米,ae2=ab2be2,ae=2.4米;(2)由题意得: ec=2.4 0.4=2(米),de2=cd2ce2,de=1.5(米),bd=0.8米【点评】此题主要考查了勾股定理的应用,关键是掌握正确运用勾股定理:直角三角形中,两直角边的平方和等于斜边的平方23如图,已知菱形 abcd的对角线相交于点o,延长 ab至点 e,使 be=ab ,连接 ce (1)求证: bd=ec ;(2)若 e=50 ,求 bao的大小【考点】 菱形的性质;平行四边形的判定与性质【分析】(1)根据菱形
30、的对边平行且相等可得ab=cd ,abcd,然后证明得到be=cd ,be cd ,从而证明四边形becd是平行四边形,再根据平行四边形的对边相等即可得证;(2)根据两直线平行,同位角相等求出abo的度数,再根据菱形的对角线互相垂直可得 acbd,然后根据直角三角形两锐角互余计算即可得解【解答】 (1)证明:菱形 abcd ,ab=cd ,abcd ,又be=ab ,be=cd ,be cd,四边形 becd是平行四边形,bd=ec ;(2)解:平行四边形becd ,bd ce ,abo= e=50 ,又菱形 abcd ,ac丄 bd,bao=90 abo=40 【点评】本题主要考查了菱形的性
31、质,平行四边形的判定与性质, 熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键24已知:如图,在 ?abcd中,e、f分别为边 ab、cd的中点, bd 是对角线,agdb交 cb的延长线于 g(1)求证: ade cbf ;(2)若四边形 bedf是菱形,则四边形 agbd是什么特殊四边形?并证明你的结论【考点】 全等三角形的判定;平行四边形的性质;菱形的性质;矩形的判定【分析】 (1)在证明全等时常根据已知条件, 分析还缺什么条件, 然后用(sas ,asa ,sss )来证明全等;(2)先由菱形的性质得出ae=be=de ,再通过角之间的关系求出2+3=90 即adb=9
32、0 ,所以判定四边形agbd是矩形【解答】 (1)证明:四边形 abcd是平行四边形,4=c ,ad=cb ,ab=cd 点 e、f分别是 ab、cd的中点,ae= ab,cf= cd ae=cf 在aed和cbf中,ade cbf (sas )(2)解:当四边形 bedf是菱形时,四边形agbd是矩形证明:四边形 abcd是平行四边形,adbc ag bd,四边形 agbd是平行四边形四边形 bedf是菱形,de=be ae=be ,ae=be=de 1=2,3=41+2+3+4=180 ,22+23=180 2+3=90 即adb=90 ?四边形 agbd是矩形【点评】本题主要考查了平行四
33、边形的基本性质和矩形的判定及全等三角形的判定平行四边形基本性质: 平行四边形两组对边分别平行;平行四边形的两组对边分别相等; 平行四边形的两组对角分别相等;平行四边形的对角线互相平分三角形全等的判定条件:sss ,sas ,aas,asa 四思考题( 15,26 题每题 10 分)25(10 分)( 2000?河北)观察下列各式及其验证过程:验证:=;验证:=;验证:=;验证:=(1)按照上述两个等式及其验证过程的基本思路,猜想4的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n(n 为任意自然数,且n2)表示的等式,并给出证明【考点】 算术平方根【分析】(1)通过观察,不难发现:等
34、式的变形过程利用了二次根式的性质a=(a0),把根号外的移到根号内;再根据 “ 同分母的分式相加,分母不变,分子相加 ” 这一法则的倒用来进行拆分,同时要注意因式分解进行约分,最后结果中的被开方数是两个数相加,两个加数分别是左边根号外的和根号内的;(2)根据上述变形过程的规律,即可推广到一般表示左边的式子时,注意根号外的和根号内的分子、 分母之间的关系: 根号外的和根号内的分子相同,根号内的分子是分母的平方减去1【解答】 解:( 1)验证如下:左边=右边,故猜想正确;(2)证明如下:左边=右边【点评】此题是一个找规律的题目,主要考查了二次根式的性质观察时,既要注意观察等式的左右两边的联系,还要
35、注意右边必须是一种特殊形式26(10 分)(2016春?天河区期中)如图所示,在梯形abcd中,adbc ,b=90 ,ad=24cm,bc=26cm ,动点 p从点 a 出发沿 ad方向向点 d 以 1cm/s 的速度运动,动点 q 从点 c开始沿着 cb方向向点 b 以 3cm/s 的速度运动点p、q分别从点 a 和点 c同时出发,当其中一点到达端点时,另一点随之停止运动(1)经过多长时间,四边形pqcd是平行四边形?(2)经过多长时间,四边形pqba是矩形?(3)经过多长时间,当pq不平行于 cd时,有 pq=cd 【考点】 矩形的判定;平行四边形的判定;梯形【分析】 (1)设经过 ts
36、 时,四边形 pqcd是平行四边形,根据dp=cq ,代入后求出即可;(2)设经过 ts 时,四边形 pqba是矩形,根据 ap=bq ,代入后求出即可;(3)设经过 t(s),四边形 pqcd是等腰梯形,利用ep=2列出有关 t 的方程求解即可【解答】 解:( 1)设经过 x(s),四边形 pqcd为平行四边形即 pd=cq所以 24x=3x,解得: x=6(2)设经过 y(s),四边形 pqba为矩形,即 ap=bq ,所以 y=263y,解得: y=(3)设经过 t(s),四边形 pqcd是等腰梯形过 q 点作 qead,过 d 点作 dfbc ,qep= dfc=90 四边形 pqcd
37、是等腰梯形,pq=dc 又adbc ,b=90 ,ab=qe=df 在 rteqp和 rtfdc中,rteqp rtfdc (hl)fc=ep=bcad=2624=2又ae=bq=26 3t,ep=ap ae=t(263t)=2得:t=7经过 7s,pq=cd 【点评】此题主要考查平行四边形、 矩形及等腰梯形的判定掌握情况,本题解题关键是找出等量关系即可得解八年级(下)期中数学试卷一、选择题1二次根式有意义的条件是()ax3 bx3 cx3 dx32下列各式中,是最简二次根式的是()a b cd3下列命题中,正确的个数是()若三条线段的比为1:1:,则它们组成一个等腰三角形;两条对角线相等的平
38、行四边形是矩形;对角线互相平分且相等的四边形是矩形;两个邻角相等是平行四边形是矩形a1 个 b 2 个 c 3 个 d4 个4如图,在?abcd中,已知 ad=5cm,ab=3cm,ae平分bad交 bc边于点 e,则 ec等于()a1cm b2cm c 3cm d4cm5如图,在矩形 abcd中,ab=8,bc=4 ,将矩形沿 ac折叠,点 d 落在点 d 处,则重叠部分 afc的面积为()a6 b8 c 10 d126如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形若正方形a,b,c,d 的边长分别是 3,5,2,3,则最大正方形e的面积是()a13 b26
39、c 47 d94二、填空题7在平面直角坐标系中,点a(1,0)与点 b(0,2)的距离是8如图,在四边形abcd中,已知 ab=cd ,再添加一个条件(写出一个即可),则四边形 abcd是平行四边形(图形中不再添加辅助线)9若二次根式化简后的结果等于 3,则 m 的值是10 矩形的两条对角线的夹角为60 , 较短的边长为 12cm, 则对角线长为cm11若实数 a,b 满足,则以 a,b 的值为边长的等腰三角形的周长为12如图,每个小正方形的边长为1,在 abc中,点 d 为 ab的中点,则线段cd的长为13如图,将菱形纸片 abcd折叠,使点 a 恰好落在菱形的对称中心o 处,折痕为 ef
40、,若菱形 abcd的边长为 2cm,a=120 ,则 ef=cm14有一块直角三角形的绿地,量得两直角边长分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m 为直角边的直角三角形,扩充后等腰三角形绿地的面积是三、解答题(共58分)15(8 分)16(6 分)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分17 (6 分)如图,四边形 abcd中,ab=3,bc=4 ,cd=12 ,ad=13 ,且b=90 求四边形 abcd的面积18(6 分)如图,在平行四边形abcd中,对角线 ac ,bd交于点 o,经过点 o的直线交 ab于 e,交 cd于 f求证: oe
41、=of 19(6 分)如图,已知 ?abcd中,ae平分 bad,cf平分 bcd ,分别交 bc 、ad于 e、f求证: af=ec 20(8 分)如图,在 abc中,d 是 bc边上的一点, e是 ad 的中点,过 a 点作 bc的平行线交 ce的延长线于点 f,且 af=bd ,连接 bf (1)线段 bd与 cd有什么数量关系,并说明理由;(2)当 abc满足什么条件时,四边形afbd是矩形?并说明理由21(8 分)如图,在平行四边形abcd中,e、f分别为边 ab、cd的中点,过a点作 agdb,交 cb的延长线于点 g(1)求证: de bf;(2)若 g=90,求证:四边形deb
42、f是菱形22(10 分) 如图, 梯形 abcd中, adbc , b=90 , ad=24cm, ab=8cm, bc=26cm ,动点 p从点 a 开始,沿 ad 边,以 1 厘米/秒的速度向点 d 运动;动点 q 从点 c开始,沿 cb边,以 3 厘米/秒的速度向 b 点运动已知p、q 两点分别从 a、c同时出发,当其中一点到达端点时,另一点也随之停止运动假设运动时间为t秒,问:(1)t 为何值时,四边形pqcd是平行四边形?(2)t 为何值时,四边形abqp是矩形?(3)在某个时刻,四边形pqcd可能是菱形吗?为什么?参考答案与试题解析一、选择题1二次根式有意义的条件是()ax3 bx
43、3 cx3 dx3【考点】 二次根式有意义的条件【分析】 根据二次根式有意义的条件求出x+30,求出即可【解答】 解:要使有意义,必须 x+30,x3,故选 c【点评】 本题考查了二次根式有意义的条件的应用,注意:要使有意义,必须 a02下列各式中,是最简二次根式的是()a b cd【考点】 最简二次根式【分析】根据最简二次根式的定义: 被开方数不含分母, 被开方数不含开的尽的因数或因式,可得答案【解答】 解:a、被开方数含开的尽的因数或因式,故a错误;b、被开方数不含分母,被开方数不含开的尽的因数或因式,故b正确;c、被开方数含分母,故c错误;d、被开方数含开的尽的因数或因式,故d 错误;故
44、选: b【点评】本题考查了最简二次根式, 被开方数不含分母, 被开方数不含开的尽的因数或因式是解题关键3下列命题中,正确的个数是()若三条线段的比为1:1:,则它们组成一个等腰三角形;两条对角线相等的平行四边形是矩形;对角线互相平分且相等的四边形是矩形;两个邻角相等是平行四边形是矩形a1 个 b 2 个 c 3 个 d4 个【考点】 命题与定理【分析】 利用等腰三角形的判定及矩形的判定方法分别判断后即可确定答案【解答】解:根据三条线段的比为1:1:,则可得到该三角形的两边相等,所以它们组成一个等腰三角形,正确;两条对角线相等的平行四边形是矩形,正确;对角线互相平分且相等的四边形是矩形,正确;两
45、个邻角相等是平行四边形是矩形,正确,故选 d【点评】本题考查了等腰三角形的判定及矩形的判定方法,属于基础题, 比较简单4如图,在?abcd中,已知 ad=5cm,ab=3cm,ae平分bad交 bc边于点 e,则 ec等于()a1cm b2cm c 3cm d4cm【考点】 平行四边形的性质【 分 析 】 由 平 行 四边 形的 性质 和角 平分 线定 义得 出 aeb=bae, 证 出be=ab=3cm ,得出 ec=bc be=2cm即可【解答】 解:四边形 abcd是平行四边形,bc=ad=5cm ,adbc ,dae= aeb ,ae平分 bad,bae= dae ,aeb= bae
46、,be=ab=3cm ,ec=bc be=5 3=2cm;故选: b【点评】本题看成了平行四边形的性质、等腰三角形的判定与性质、 角平分线定义;熟练掌握平行四边形的性质,证出be=ab是解决问题的关键5如图,在矩形 abcd中,ab=8,bc=4 ,将矩形沿 ac折叠,点 d 落在点 d 处,则重叠部分 afc的面积为()a6 b8 c 10 d12【考点】 翻折变换(折叠问题)【分析】因为 bc为 af边上的高, 要求 afc的面积,求得 af即可,求证 afd cfb ,得 bf=d f ,设 d f=x,则在 rtafd 中,根据勾股定理求x,于是得到af=ab bf ,即可得到结果【解
47、答】 解:易证 afd cfb ,d f=bf,设 d f=x,则 af=8x,在 rtafd 中,( 8x)2=x2+42,解之得: x=3,af=ab fb=83=5,safc=?af?bc=10 故选 c【点评】 本题考查了翻折变换折叠问题, 勾股定理的正确运用, 本题中设 d f=x,根据直角三角形 afd 中运用勾股定理求x 是解题的关键6如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形若正方形a,b,c,d 的边长分别是 3,5,2,3,则最大正方形e的面积是()a13 b26 c 47 d94【考点】 勾股定理【分析】 根据正方形的面积公式,结合勾股
48、定理,能够导出正方形a,b,c ,d的面积和即为最大正方形的面积【解答】解:根据勾股定理的几何意义,可得a、b的面积和为 s1,c 、d 的面积和为 s2,s1+s2=s3,于是 s3=s1+s2,即 s3=9+25+4+9=47故选: c【点评】 能够发现正方形 a,b,c,d 的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形a,b,c,d 的面积和即是最大正方形的面积二、填空题7在平面直角坐标系中,点a(1,0)与点 b(0,2)的距离是【考点】 两点间的距离公式【分析】 本题可根据两点之间的距离公式得出方程:,化简即可得出答案【解答】解:点 a(1,0)与点 b(0
49、,2)的距离是:=故答案填:【点评】 本题主要考查了两点之间的距离公式,要熟记并灵活掌握8如图,在四边形 abcd中,已知 ab=cd ,再添加一个条件ad=bc (写出一个即可),则四边形abcd是平行四边形(图形中不再添加辅助线)【考点】 平行四边形的判定【分析】可再添加一个条件ad=bc ,根据两组对边分别相等的四边形是平行四边形,四边形 abcd是平行四边形【解答】 解:根据平行四边形的判定,可再添加一个条件:ad=bc故答案为: ad=bc (答案不唯一)【点评】此题主要考查平行四边形的判定是一个开放条件的题目, 熟练掌握判定定理是解题的关键9若二次根式化简后的结果等于 3,则 m
50、的值是2【考点】 二次根式的性质与化简【分析】 根据题意列出算式,根据二次根式的性质解答即可【解答】 解:由题意得,=3,则 2m2+1=9,解得, m=2,故答案为: 2【点评】 本题考查的是二次根式的化简,掌握二次根式的性质:=| a| 是解题的关键10矩形的两条对角线的夹角为60 ,较短的边长为12cm,则对角线长为24cm【考点】 矩形的性质【分析】根据矩形对角线相等且互相平分性质和题中条件易得aob为等边三角形,即可得到矩形对角线一半长,进而求解即可【解答】 解:如图: ab=12cm ,aob=60 四边形是矩形, ac ,bd是对角线oa=ob=od=oc=bd= ac 在aob
51、中,oa=ob ,aob=60 oa=ob=ab=12cm ,bd=2ob=2 12=24cm故答案为: 24【点评】 矩形的两对角线所夹的角为60 ,那么对角线的一边和两条对角线的一半组成等边三角形本题比较简单,根据矩形的性质解答即可11若实数 a,b 满足,则以 a,b 的值为边长的等腰三角形的周长为10【考点】等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系【分析】 先根据非负数的性质列式求出a、b,再分情况讨论求解即可【解答】 解:根据题意得, a2=0,b4=0,解得 a=2,b=4若 a=2是腰长,则底边为4,三角形的三边分别为2、2、4,2+2=4
52、,不能组成三角形,若 a=4是腰长,则底边为2,三角形的三边分别为4、4、2,能组成三角形,周长=4+4+2=10故答案为: 10【点评】 本题考查了等腰三角形的性质, 非负数的性质,以及三角形的三边关系,难点在于要讨论求解12如图,每个小正方形的边长为1,在 abc中,点 d 为 ab的中点,则线段cd的长为【考点】 勾股定理;直角三角形斜边上的中线;勾股定理的逆定理【分析】本题考查勾股定理的逆定理和直角三角形的性质,利用了勾股定理的逆定理和直角三角形的性质求解【解答】 解:观察图形ab=,ac=3,bc=2ac2+bc2=ab2,三角形为直角三角形,直角三角形中斜边上的中线等于斜边的一半c
53、d=【点评】解决此类题目要熟记斜边上的中线等于斜边的一半注意勾股定理的应用13如图,将菱形纸片 abcd折叠,使点 a 恰好落在菱形的对称中心o 处,折痕为 ef ,若菱形 abcd的边长为 2cm,a=120 ,则 ef=cm【考点】 菱形的性质;翻折变换(折叠问题)【分析】根据菱形性质得出ac bd, ac平分 bad, 求出 abo=30 , 求出 ao,bo、do,根据折叠得出 ef ac ,ef平分 ao,推出 ef bd,推出, ef为abd的中位线,根据三角形中位线定理求出即可【解答】 解:连接 bd、ac,四边形 abcd是菱形,ac bd,ac平分 bad ,bad=120
54、,bac=60 ,abo=90 60 =30 ,aob=90 ,ao= ab= 2=1,由勾股定理得: bo=do=,a沿 ef折叠与 o重合,ef ac,ef平分 ao,ac bd,ef bd,ef为abd的中位线,ef= bd=(+)=,故答案为:【点评】 本题考查了折叠性质,菱形性质,含30 度角的直角三角形性质,勾股定理,平行线分线段成比例定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力14有一块直角三角形的绿地,量得两直角边长分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m 为直角边的直角三角形,扩充后等腰三角形绿地的面积是48m2或 40m2【考点
55、】 勾股定理的应用;三角形的面积;等腰三角形的性质【分析】 求出直角三角形的面积 =24m2,分两种情况:扩充的直角三角形的两直角边长为 8m 和 6m;扩充的直角三角形的两直角边长为8m 和 4m;分别求出面积即可【解答】 解:直角三角形的绿地,两直角边长分别为6m,8m,面积 =68=24(m2),斜边长 =10(m),分两种情况:扩充的直角三角形的两直角边长为8m 和 6m 时;扩充后等腰三角形绿地的面积=224=48(m2);扩充的直角三角形的两直角边长为8m 和 4m 时;扩充后等腰三角形绿地的面积=24+84=40(m2);故答案为: 48m2或 40m2【点评】 本题考查了勾股定
56、理的运用、三角形面积的计算、等腰三角形的性质;熟练掌握勾股定理和等腰三角形的性质是解决问题的关键;注意分类讨论三、解答题(共58分)15【考点】 实数的运算;零指数幂;负整数指数幂【分析】 根据二次根式的加减,可得答案;根据二次根式的性质、 绝对值的性质、 零次幂,负整数指数幂与正整数指数幂互为倒数,可得答案【解答】 解:原式 =2+23+=;原式 =2+11+2=3【点评】本题考查了实数的运算,二次根式的性质、绝对值的性质、零次幂负整数指数幂与正整数指数幂互为倒数16有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分【考点】 中心对称【分析】 思路 1:先将图形分割成两个矩形,
57、找出各自的对称中心,过两个对称中心做直线即可;思路 2:先将图形补充成一个大矩形,分别找出图中两个矩形各自的对称中心,过两个对称中心做直线即可【解答】 解:如图所示,有三种思路:【点评】 本题需利用矩形的中心对称性解决问题17如图,四边形 abcd中,ab=3,bc=4 ,cd=12 ,ad=13 ,且 b=90 求四边形 abcd的面积【考点】 勾股定理;勾股定理的逆定理【分析】连接 ac,先根据勾股定理求出ac的长度,再根据勾股定理的逆定理判断出 acd的形状,最后利用三角形的面积公式求解即可【解答】 解:连接 ac,如下图所示:abc=90 ,ab=3,bc=4 ,ac=5,在acd中,
58、ac2+cd2=25+144=169=ad2,acd是直角三角形,s四边形abcd= ab?bc +ac?cd= 34+512=36【点评】本题考查的是勾股定理、 勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出 acd的形状是解答此题的关键,难度适中18如图,在平行四边形abcd中,对角线 ac,bd交于点 o,经过点 o 的直线交 ab于 e,交 cd于 f求证: oe=of 【考点】 平行四边形的性质;全等三角形的判定与性质【分析】 由四边形 abcd是平行四边形,可得oa=oc ,abcd ,又由 aoe= cof ,易证得 oae ocf ,则可得 oe=of 【解答】 证
59、明:四边形 abcd是平行四边形,oa=oc ,abcd ,oae= ocf ,在 oae和ocf中,oae ocf (asa ),oe=of 【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质此题难度不大,注意掌握数形结合思想的应用19如图,已知?abcd中,ae平分 bad ,cf平分 bcd ,分别交 bc 、ad于 e、f求证: af=ec 【考点】 平行四边形的性质【分析】由平行四边形的性质得出adbc ,bad=bcd ,证出 dae= aeb ,由已知条件得出 dae= fcb= aeb ,证出 aefc ,得出四边形 aecf为平行四边形,即可得出结论【解答】 证明:四边形 abcd为平行四边形,adbc bad=bcd ,af ec ,dae= aeb ,ae平分 b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年金融行业数据分析师面试模拟题及策略分析
- 2025年心理咨询师资格认证模拟题及参考答案
- 2025年电子商务师高级考试试题及解析与答案
- 2025年交通安全问答试题及答案
- 2025年轨道交通调度员(技师)职业技能鉴定考试题库及答案(浓缩50题)
- 2025注册验船师资格考试(B级船舶检验法律法规)模拟试题及答案一
- 2025年能源资源管理与可持续发展考题及答案
- 桃花源记课件深圳
- 陕西省四校联考2026届化学高一第一学期期中调研试题含解析
- 桃源消防知识培训讲座课件
- 生物化学英文版课件:Chapter 7 Carbohydrates Glycobiology
- 走进奇妙的几何世界
- 飞虎队精神将永远留在这里
- 湘教版九年级美术教学计划(三篇)
- 紧急宫颈环扎术的手术指征及术后管理-课件
- “三重一大”决策 标准化流程图 20131017
- Cpk 计算标准模板
- 信息科技课程标准新课标学习心得分享
- 环保与物业公司合作协议
- FZ/T 01057.2-2007纺织纤维鉴别试验方法 第2部分:燃烧法
- 面条制品-课件
评论
0/150
提交评论