中考数学应用题汇总_第1页
中考数学应用题汇总_第2页
中考数学应用题汇总_第3页
中考数学应用题汇总_第4页
中考数学应用题汇总_第5页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、新课标中考数学应用题精选汇总(含图像、表格信息问题) 应用题是中考重点和难点,解题时要认真读题,正确建模,灵活解答分析。读题时,文字信息要注意关键词语、隐含条件; 读表格图像时, 要结合文字信息理解,将信息转化为实际意义。建模、分析见以下例题。一、方程型1、 (股票问题) (四川凉山)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的 0.5%作费用张先生以每股5 元的价格买入“西昌电力”股票1000 股,若他期望获利不低于1000 元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01 元)提示:一元一次方程型2、 (增长率问题) (广州市)为了拉动内需, 广东启动 “家电下

2、乡” 活动。某家电公司销售给农户的型冰箱和型冰箱在启动活动前一个月共售出960 台,启动活动后的第一个月销售给农户的型和型冰箱的销量分别比启动活动前一个月增长 30%、25%,这两种型号的冰箱共售出1228 台。(1)在启动活动前的一个月,销售给农户的型冰箱和型冰箱分别为多少台?(2)若型冰箱每台价格是2298 元,型冰箱每台价格是1999 元,根据“家电下乡”的有关政策, 政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228 台型冰箱和型冰箱,政府共补贴方程了多少元(结果保留 2 个有效数字)?提示:一元一次方程型3、 (传染问题) (广东省)某种电脑

3、病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81 台电脑被感染 . 请你用学过的知识分析, 每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?提示:一元二次方程型4、 (广东东营)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自12 月底起进行了家电下乡试点,对彩电、冰箱 (含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补企业数据显示,截至12 月底 ,试点产品已销售350 万台(部),销售额达50 亿元,与上年同期相比,试点产品家电销售量增长了40%(1)求 同期试点产品类家电销售量为多少万台(部)?(2

4、)如果销售家电的平均价格为:彩电每台 1500 元,冰箱每台2000 元, ?手机每部800 元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?提示:一元一次方程与二元一次方程型二、不等式型5、 (方案设计) (河南)某家电商场计划用32400 元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5 台. 三种家电的进价和售价如下表所示:(1) 在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案 ? (2) 国家规定:农民购买家电后,可根

5、据商场售价的13领取补贴 . 在 (1) 的条件下如果这15 台家电全部销售给农民,国家财政最多需补贴农民多少元? 提示 : 不等式组型s/千米6t/分8060203001三、函数型近几年常考分段函数。关于二次函数最值的考查有些变化,由直接求最值, 到求取值范围内最值, 或求整数点最值;若为分段函数也有比较各段最值确定最值。其它还有考查自变量取值范围,二次函数对称轴性质,函数增减性等。详情见后面例题。6、 (优化方案) (恩施州)某超市经销a、b两种商品, a 种商品每件进价20 元,售价30 元;b种商品每件进价35 元,售价 48 元(1)该超市准备用800 元去购进a、b两种商品若干件,

6、 怎样购进才能使超市经销这两种商品所获利润最大(其中 b种商品不少于7 件)?(2)在“五一”期间,该商场对a、b两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过 300 元不优惠超过 300 元且不超过 400 元售价打八折超过 400 元售价打七折促销活动期间小颖去该超市购买a种商品,小华去该超市购买b 种商品, 分别付款 210元与 268.8 元. 促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?提示:注意隐含条件- 件数是整数、一次函数、一元一次方程7、 (图像信息问题) (20 黑龙江大兴安岭)邮递员小王从县城出发,骑自行车到a 村投递

7、, 途中遇到县城中学的学生李明从a 村步行返校 小王在 a 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到 1 分钟二人与县城间的距离s(千米 )和小王从县城出发后所用的时间t(分)之间的函数关系如图, 假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案(2)小王从县城出发到返回县城所用的时间(3)李明从 a 村到县城共用多长时间?建议:读图像信息时: 1、读横轴、纵轴意义 2、读特殊点的意义 3、读每一段图像特征4、读整体图像特征提示:(1)法一(解析法)求线段解析式 再求函数值;法二(几何法)

8、利用图中相似性直接求所需线段长(2)图文结合读题意(3)法同( 1)8、 (图像信息问题) (20 年衡阳市)在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h) ,两组离乙地的距离分别为s1(km )和 s2(km) ,图中的折线分别表示s1、s2与 t之间的函数关系(1)甲、乙两地之间的距离为km,乙、丙两地之间的距离为km;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段ab 所表示的s2与 t 间的函数关系式,并写出自变量t 的取值范围

9、提示:注意坐标轴意义、将图像信息转化为实际意义。9、 (20 年江苏省) 某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13 日调价时的销售利润为4 万元,截止至15 日进油时的销售利润为5.5 万元 (销售利润 (售价成本价)销售量) 请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x为多少时,销售利润为4万元;(2)分别求出线段ab与bc所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在oa、ab、bc三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)提

10、示:图文结合读懂题意、文字信息与图像信息相互转化;分段函数、一次函数、读懂各段之间联系。2468s(km) 2 0 t(h) a b y(千米)x(小时)4.4 3 120 ()o 10、 (分段函数)(山西太原)a、b两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶甲车驶往b城,乙车驶往a城,甲车在行驶过程中速度始终不变甲车距b城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图( 1)求y关于x的表达式;( 2)已知乙车以60 千米 /时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米)请直接写出s关于x的表达式;(

11、3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米 /时)并保持匀速行驶, 结果比甲车晚40 分钟到达终点,求乙车变化后的速度a在下图中画出乙车离开b城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象提示:注意坐标轴意义11、 (20 年牡丹江市 ) 甲、乙两车同时从a地出发,以各自的速度匀速向b地行驶 甲车先到达b地,停留 1 小时后按原路以另一速度匀速返回,直到两车相遇乙车的速度为每小时60 千米下图是两车之间的距离y(千米)与乙车行驶时间x(小时)之间的函数图象(1)请将图中的()内填上正确的值,并直接写出甲车从a到b的行驶速度;(2)求从甲车返回到与乙车相遇

12、过程中y与x之间的函数关系式,并写出自变量x的取值范围(3)求出甲车返回时行驶速度及a、b两地的距离(分析)行程问题:注意坐标轴的意义,将图像信息转化为实际意义进行解答【类似于 08 南京中考题】1 2 34560 120 180 240 300 360 o y/千米x/时12、 (20 河池)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒已知药物释放过程中, 室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当

13、空气中每立方米的含药量降低到0.45 毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?提示:分段函数、一次函数、反比例函数;考查函数自变量范围。13、 (20 年山东青岛市)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查调查发现这种水产品的每千克售价1y(元)与销售月份x(月)满足关系式3368yx,而其每千克成本2y(元)与销售月份x(月)满足的函数关系如图所示(1)试确定bc、的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3) “五一”之前,几月份出售这种水产品每

14、千克的利润最大?最大利润是多少?提示 :两函数相减得二次函数(整点)、求最值、o 9 (毫克)12 (分钟)xy22y2(元)x(月)1 2 3 4 5 6 7 8 9 10 2218yxbxco 14、(08潍坊)一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算, 使用回收净化设备后的1至x月(1x12)的利润的月平均值w (万元)满足w=10 x+90,第二年的月利润稳定在第1 年的第 12 个月的水平。(1)设使用回收净化设备后的1至x月(1x12)的利润和为y, 写出 y 关于 x的函数关系式,并求

15、前几个月的利润和等于700 万元?(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时 x 个月的利润和相等?(3)求使用回收净化设备后两年的利润总和。提示:二次函数、一元二次方程、第(3)问,先求第1 年第 12 月利润即为第二年每月利润。15、 (07 黄冈)我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520 万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40 元.经过市场调研发现: 该产品的销售单价,需定在 100 元到300元之间较为合理.当销售单价定为100元时,年销售量为20 万件;当销售单价

16、超过 100 元,但不超过200 元时,每件新产品的销售价格每增加10 元,年销售量将减少 0.8 万件;当销售单价超过200 元,但不超过 300 元时,每件产品的销售价格每增加10 元,年销售量将减少1 万件 .设销售单价为x(元) ,年销售量为y(万件),年获利为w(万元) .(年获利 = 年销售额生产成本投资成本)(1)直接写出y与x之间的函数关系式;(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?(3)若该公司希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利不低于1842 元,请你

17、确定此时销售单价的范围 .在此情况下,要使产品销售量最大,销售单价应定为多少元?提示:(1)分段一次函数,两段之间有内在联系,承上启下,即第二段起点是第一段终点;(2)分段二次函数, 求最值或区间内最值;(3)第二年没有投资成本,所以与第一年获利函数关系式不一样;求自变量取值范围。16、 (08 黄冈)四川汶川大地震发生后,我市某工厂a车间接到生产一批帐篷的紧急任务,要求必须在12 天 (含 12 天) 内完成已知每顶帐篷的成本价为800 元, 该车间平时每天能生产帐篷20 顶为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高这样,第一天生产了22 顶,以后每

18、天生产的帐篷都比前一天多2 顶由于机器损耗等原因,当每天生产的帐篷数达到30 顶后,每增加1 顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20 元设生产这批帐篷的时间为x天,每天生产的帐篷为y顶( 1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围( 2)若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区设该车间每天的利润为w元,试求出w与x之间的函数关系式,并求出该车间捐款给灾区多少钱?提示:(1)一次函数(2)分段一次、二次函数,求区间内最值17、 (湖北黄冈)新星电子科技公司积极应对 世界金融危机,及时调整投资方向,瞄准光伏产业,建成

19、了太阳能光伏电池生产线由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程 (公司对经营的盈亏情况每月最后一天结算1 次) 公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上该图象从左至右,依次是线段oa、曲线ab和曲线bc,其中曲线ab为抛物线的一部分,点a为该抛物线的顶点,曲线bc为另一抛物线252051230yxx的一部分, 且点a,b,c的横坐标分别为4, 10,12 (1)求该公司累积获得的利润y(万元) 与时间第x(月)之间的函数关系式

20、;(2)直接写出第x个月所获得s(万元) 与时间x(月)之间的函数关系式(不需要写出计算过程) ;(3)前 12 个月中, 第几个月该公司所获得的利润最多?最多利润是多少万元?提示:分段函数、一次函数、二次函数、注意坐标轴意义(y轴为累积利润) 、第( 3)问分段转化求出最值再比较。o 60 204批发单价(元)5批发量( kg)第 23 题图( 1)o6 240日最高销量( kg)80零售价(元)第 23 题图( 2)48 (6,80)(7,40)18、 (安徽) 已知某种水果的批发单价与批发量的函数关系如图(1)所示(1)请说明图中、两段函数图象的实际意义(2)写出批发该种水果的资金金额w

21、(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内, 以同样的资金可以批发到较多数量的该种水果(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大提示:分段函数、一次函数、二次函数及其最值、优化方案金额 w(元)o 批发量 m(kg)30020010020406019、 (20 年重庆市江津区)某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7

22、天)涨价2 元,从第6 周开始,保持每件30 元的稳定价格销售,直到 11 周结束,该童装不再销售。(1)请建立销售价格y(元)与周次x之间的函数关系;(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x 之间的关系为12)8(812xz, 1 x 11,且 x 为整数, 那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?提示:理解开始计数为第一周、分段函数、求区间内最值20、 (08武汉)某商品的进价为每件30元,现在的售价为每件40元, 每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元) ,那么每星期少卖10件.设每件涨价

23、x元 (x为非负整数),每星期的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围; (2)如何定价才能使每星期的利润最大且每星期销量较大?每星期的最大利润是多少?提示: 分段函数、 两个一次函数乘得二次函数、求整数点最值21、(08天门)一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本)若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份为了便于结算, 每份套餐的售价x(元)取整数, 用y(元)表示该店日净收入(日净收入每天的销售额套餐成本每天固定支出) (1)求y与x的函数

24、关系式;(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?提示:不等式、分段函数、一次函数、二次函数(整数点求最值)四、综合型22、 (鄂州市)某土产公司组织20 辆汽车装运甲、乙、丙三种土特产共120 吨去外地销售。 按计划 20辆车都要装运, 每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求 y 与 x 之间的函数关系式(2)如果装运每

25、种土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案。(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值。土特产种类甲乙丙每辆汽车运载量(吨)8 6 5 每吨土特产获利(百元)12 16 10 提示:一次函数、不等式、方案设计23、 (哈尔滨) 跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售若每个甲种零件的进价比每个乙种零件的进价少2元, 且用 80 元购进甲种零件的数量与用100元购进乙种零件的数量相同(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3 倍还少 5 个,购

26、进两种零件的总数量不超过95 个,该五金商店每个甲种零件的销售价格为12 元,每个乙种零件的销售价格为15 元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润售价进价)超过 371 元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来提示:分式方程、不等式、方案设计24、 (湖北荆州)由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1 万元台,并预付了5 万元押金。他计划一年内要达到一定的销售量,且完成此销售量所用的进货总金额加上押金控制在不低于 3

27、4 万元,但不高于40 万元若一年内该产品的售价y(万元台)与月次x(112x且为整数)满足关系是式:0.050.25 (14)0.1(46)0.0150.01 (612)xxyxxx,一年后发现实际每月的销售量p(台)与月次x之间存在如图所示的变化趋势 直接写出实际每月的销售量p(台)与月次x之间的函数关系式;求前三个月中每月的实际销售利润w(万元)与月次x之间的函数关系式; 试判断全年哪一个月的的售价最高,并指出最高售价; 请通过计算说明他这一年是否完成了年初计划的销售量提示:分段函数(整点)、一次函数、两函数相乘得二次函数、不等式组36 4 月20 40 xp(台)12 月(第 18 题

28、图)25、 (湖南长沙) 为了扶持大学生自主创业,市政府提供了80 万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品, 并约定用该公司经营的利润逐步偿还无息贷款 已知该产品的生产成本为每件 40 元,员工每人每月的工资为2500 元,公司每月需支付其它费用15 万元该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50 元时,为保证公司月利润达到5 万元(利润销售额生产成本员工工资其它费用),该公司可安排员工多少人?(3)若该公司有80 名员工,则该公司最早可在几个月后还清无息贷

29、款?提示:分段函数、 一次函数、 一元一次方程、二次函数及其最值(分类讨论 ) 26、(20 武汉 ) 某商品的进价为每件40 元,售价为每件50 元,每个月可卖出210 件;如果每件商品的售价每上涨1 元,则每个月少卖 10 件(每件售价不能高于65 元) 设每件商品的售价上涨x元(x为正整数) ,每个月的销售利润为y元(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200 元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200 元?提

30、示: 一元二次方程、两函数相乘得二次函数(整数点、最值)4 2 1 40 60 80 x (元)(万件)y o 27、 (08 黄石)某公司有a型产品 40 件,b型产品 60 件,分配给下属甲、乙两个商店销售,其中 70 件给甲店, 30 件给乙店,且都能卖完两商店销售这两种产品每件的利润(元)如下表:a型利润b型利润甲店200 170 乙店160 150 (1)设分配给甲店a型产品x件,这家公司卖出这 100 件产品的总利润为w(元) ,求w关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560 元,说明有多少种不同分配方案, 并将各种方案设计出来;(3)为了促销,

31、公司决定仅对甲店a型产品让利销售, 每件让利a元,但让利后a型产品的每件利润仍高于甲店b型产品的每件利润甲店的b型产品以及乙店的ab,型产品的每件利润不变, 问该公司又如何设计分配方案,使总利润达到最大?提示:一次函数、方案设计、对参数字母分类讨论求最值。28、(08 扬州)红星公司生产的某种时令商品每件成本为20 元,经过市场调研发现,这种商品在未来 40天内的日销售量 m (件)与时间 t (天)的关系如下表:时间 t (天)1 3 6 10 36 日销售量 m (件)94 90 84 76 24 未来 40 天内,前 20 天每天的价格 y1(元/件 ) 与 时 间t ( 天 )的 函

32、数 关系 式 为25t41y1(20t1且 t 为整数) ,后 20 天每天的价格 y2(元/ 件) 与时间 t (天)的函 数关 系式 为40t21y2(40t21且 t 为整数) 。下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与 t (天)之间的关系式;(2)请预测未来 40 天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前 20 天中,该公司决定每销售一件商品就捐赠a 元利润( a4)给希望工程。公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a的取值范围。提示:(1)一次函数,(2)分段二次函数,分别求顶点最值和区间内最值;(3)含参数字母的二次函数,考查对称轴范围求参数范围。不等式。五几何实际应用题29、 (20 年广西南宁) 如图 21,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等设甬道的宽为x米(1)用含x的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求, 甬道的宽不能超过6米.如果修建甬道的总费用(万元) 与甬道的宽度成正比例关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论