




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1 / 11 大纲全国文科大纲全国文科 1.(2012 大纲全国,文 1)已知集合 a=x|x 是平行四边形,b=x|x 是矩形,c=x|x 是正方形,d=x|x是菱形,则( ). a.ab b.cb c.dc d.ad b 正方形组成的集合是矩形组成集合的子集, cb. 2.(2012 大纲全国,文 2)函数 y=1x+(x-1)的反函数为( ). a.y=x2-1(x0) b.y=x2-1(x1) c.y=x2+1(x0) d.y=x2+1(x1) a y=1x+,y2=x+1,x=y2-1,x,y互换可得:y=x2-1. 又y=1x+中 x-1,y0. 反函数中 x0,故选 a. 3.(
2、2012 大纲全国,文 3)若函数 f(x)=sin3x+(0,2)是偶函数,则 =( ). a.2 b.23 c.32 d.53 c f(x)=sin3x+是偶函数,f(0)=1. sin3=1. 3=k+2(kz). =3k+32(kz). 又0,2,当 k=0 时,=32.故选 c. 4.(2012 大纲全国,文 4)已知 为第二象限角,sin =35,则 sin 2=( ). a.-2425 b.-1225 c.1225 d.2425 a sin =35,且 为第二象限角, cos =-21sin=-45. 2 / 11 sin 2=2sin cos =23545=-2425.故选 a
3、. 5.(2012 大纲全国,文 5)椭圆的中心在原点,焦距为 4,一条准线为 x=-4,则该椭圆的方程为( ). a.2x16+2y12=1 b.2x12+2y8=1 c.2x8+2y4=1 d.2x12+2y4=1 c 焦距为 4,即 2c=4,c=2. 又准线 x=-4,-2ac=-4. a2=8.b2=a2-c2=8-4=4. 椭圆的方程为:2x8+2y4=1.故选 c. 6.(2012 大纲全国,文 6)已知数列an的前 n 项和为 sn,a1=1,sn=2an+1,则 sn=( ). a.2n-1 b.n 132 c.n 123 d.n 112 b sn=2an+1,sn-1=2a
4、n(n2), 两式相减得:an=2an+1-2an, n 1naa+=32. 数列an从第 2项起为等比数列.又 n=1 时,s1=2a2,a2=12. sn=a1+n 113122312=1-n 1312=n 132. 7.(2012 大纲全国,文 7)6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( ). a.240 种 b.360 种 c.480 种 d.720种 c 由题意可采用分步乘法计数原理,甲的排法种数为14a,剩余 5 人进行全排列:55a,总的情况有:14a55a=480 种.故选 c. 8.(2012 大纲全国,文 8)已知正四棱柱 abcd
5、-a1b1c1d1中,ab=2,cc1=22,e为 cc1的中点,则直线ac1与平面 bed 的距离为( ). a.2 b.3 c.2 d.1 3 / 11 d 连结 ac交 bd 于点 o,连结 oe. ab=2,ac=22. 又 cc1=22,则 ac=cc1. 作 chac1于点 h,交 oe于点 m. 由 oe为acc1的中位线知,cmoe,m为 ch的中点. 由 bdac,ecbd 知,bd面 eoc, cmbd. cm面 bde. hm 为直线 ac1到平面 bde的距离. 又acc1为等腰直角三角形,ch=2.hm=1. 9.(2012 大纲全国,文 9)abc 中,ab 边的高
6、为 cd,若cb=a,ca=b,a b=0,|a|=1,|b|=2,则ad=( ). a.13a-13b b.23a-23b c.35a-35b d.45a-45b d a b=0,ab. 又|a|=1,|b|=2, |ab|=5, |cd|=1 25=2 55. |ad|=222 525=4 55. ad=4 55ab5=4ab5=45(a-b)=45a-45b. 10.(2012 大纲全国,文 10)已知 f1,f2为双曲线 c:x2-y2=2 的左、右焦点,点 p在 c上,|pf1|=2|pf2|,则 cosf1pf2=( ). a.14 b.35 c.34 d.45 4 / 11 c
7、设|pf2|=m,则|pf1|=2m, 由双曲线定义:|pf1|-|pf2|=2a,得 2m-m=22, m=22. 又 2c=222ab+=2 2=4, 由余弦定理可得:cosf1pf2=2221212|pf |pf |4c2|pf|pf |+=34. 11.(2012 大纲全国,文 11)已知 x=ln ,y=log52,z=12e,则( ). a.xyz b.zxy c.zyx d.yz1,y=log5214=12,且12ee0=1, yzx. 12.(2012 大纲全国,文 12)正方形 abcd的边长为 1,点 e在边 ab上,点 f在边 bc上,ae=bf=13.动点p 从 e出发
8、沿直线向 f运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点 p第一次碰到 e 时,p与正方形的边碰撞的次数为( ). a.8 b.6 c.4 d.3 b 如图,由题意:tanbef=12, 2kx1=12,x2为 hd 中点, 23x dx d=12,x3d=13, 43x cx c=12,x4c=13, 54x hx h=12,x5h=12, 56x ax a=12,x6a=13,x6与 e 重合,故选 b. 5 / 11 13.(2012 大纲全国,文 13)81x2x+的展开式中 x2的系数为 . 7 81x2x+展开式的通项为 tr+1=r8cx8-rr12x=r8c2-
9、rx8-2r, 当 8-2r=2时,r=3. x2的系数为38c2-3=7. 14.(2012 大纲全国,文 14)若 x,y 满足约束条件xy 10,xy30,x3y30,+ +则 z=3x-y 的最小值为 . -1 由题意画出可行域,由 z=3x-y 得 y=3x-z,要使 z 取最小值,只需截距最大即可,故直线过 a(0,1)时,z最小. zmin=3 0-1=-1. 15.(2012 大纲全国,文 15)当函数 y=sin x-3cos x(0 x2)取得最大值时,x= . 56 y=sin x-3cos x=213xx22sincos=2sinx3. 当 y取最大值时,x-3=2k+
10、2, x=2k+56. 又0 x1时有 an=sn-sn-1=n23+an-n13+an-1, 整理得 an=n1n1+an-1. 于是 a1=1, a2=31a1, a3=42a2, an-1=nn2an-2, an=n1n1+an-1. 7 / 11 将以上 n个等式两端分别相乘,整理得 an=n(n1)2+. 综上,an的通项公式 an=n(n1)2+. 19.(2012 大纲全国,文 19)如图,四棱锥 p-abcd中,底面 abcd 为菱形,pa底面abcd,ac=22,pa=2,e 是 pc上的一点,pe=2ec. (1)证明:pc平面 bed; (2)设二面角 a-pb-c 为
11、90,求 pd 与平面 pbc所成角的大小. 解法一:(1)证明:因为底面 abcd为菱形,所以 bdac. 又 pa底面 abcd, 所以 pcbd. 设 acbd=f,连结 ef. 因为 ac=22,pa=2,pe=2ec, 故 pc=23,ec=2 33,fc=2, 从而pcfc=6,acec=6, 因为pcfc=acec,fce=pca, 所以fcepca,fec=pac=90, 由此知 pcef. pc与平面 bed 内两条相交直线 bd,ef 都垂直, 所以 pc平面 bed. (2)在平面 pab 内过点 a作 agpb,g为垂足. 因为二面角 a-pb-c为 90,所以平面 p
12、ab平面 pbc. 又平面 pab平面 pbc=pb,故 ag平面 pbc,agbc. bc 与平面 pab内两条相交直线 pa,ag 都垂直, 故 bc平面 pab,于是 bcab, 8 / 11 所以底面 abcd为正方形,ad=2,pd=22paad+=22. 设 d 到平面 pbc的距离为 d. 因为 adbc,且 ad平面 pbc,bc平面 pbc,故 ad平面 pbc,a,d 两点到平面 pbc 的距离相等,即 d=ag=2. 设 pd与平面 pbc 所成的角为 ,则 sin =dpd=12. 所以 pd与平面 pbc所成的角为 30. 解法二:(1)证明:以 a为坐标原点,射线
13、ac 为 x 轴的正半轴,建立如图所示的空间直角坐标系 a-xyz. 设 c(22,0,0),d(2,b,0),其中 b0, 则 p(0,0,2),e4 22,0,33,b(2,-b,0). 于是pc=(22,0,-2),be=22,b,33,de=22,-b,33, 从而pcbe=0,pcde=0, 故 pcbe,pcde. 又 bede=e,所以 pc平面 bde. (2)ap=(0,0,2),ab=(2,-b,0). 设 m=(x,y,z)为平面 pab 的法向量, 则 map=0,mab=0, 即 2z=0且2x-by=0, 令 x=b,则 m=(b,2,0). 设 n=(p,q,r)
14、为平面 pbc 的法向量, 则 npc=0,nbe=0, 即 22p-2r=0且2p3+bq+23r=0, 令 p=1,则 r=2,q=-2b,n=21,-, 2b. 因为面 pab面 pbc,故 m n=0,即 b-2b=0,故 b=2, 于是 n=(1,-1,2),dp=(-2,-2,2), cos=n?|n|dp|dp=12,=60. 因为 pd与平面 pbc所成角和互余,故 pd 与平面 pbc 所成的角为 30. 9 / 11 20.(2012 大纲全国,文 20)乒乓球比赛规则规定:一局比赛,双方比分在 10平前,一方连续发球 2次后,对方再连续发球 2次,依次轮换,每次发球,胜方
15、得 1 分,负方得 0分.设在甲、乙的比赛中,每次发球,发球方得 1分的概率为 0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球. (1)求开始第 4 次发球时,甲、乙的比分为 1 比 2的概率; (2)求开始第 5 次发球时,甲得分领先的概率. 解:记 ai表示事件:第 1 次和第 2 次这两次发球,甲共得 i分,i=0,1,2; bi表示事件:第 3 次和第 4次这两次发球,甲共得 i 分,i=0,1,2; a表示事件:第 3次发球,甲得 1分; b表示事件:开始第 4次发球时,甲、乙的比分为 1比 2; c表示事件:开始第 5次发球时,甲得分领先. (1)b=a0 a+a
16、1a, p(a)=0.4,p(a0)=0.42=0.16,p(a1)=2 0.6 0.4=0.48, p(b)=p(a0 a+a1a) =p(a0 a)+p(a1a) =p(a0)p(a)+p(a1)p(a) =0.16 0.4+0.48 (1-0.4)=0.352. (2)p(b0)=0.62=0.36,p(b1)=2 0.4 0.6=0.48,p(b2)=0.42=0.16, p(a2)=0.62=0.36. c=a1 b2+a2 b1+a2 b2 p(c)=p(a1 b2+a2 b1+a2 b2) =p(a1 b2)+p(a2 b1)+p(a2 b2) =p(a1)p(b2)+p(a2)
17、p(b1)+p(a2)p(b2) =0.48 0.16+0.36 0.48+0.36 0.16=0.307 2. 21.(2012 大纲全国,文 21)已知函数 f(x)=13x3+x2+ax. (1)讨论 f(x)的单调性; (2)设 f(x)有两个极值点 x1,x2,若过两点(x1,f(x1),(x2,f(x2)的直线 l与 x 轴的交点在曲线 y=f(x)上,求 a的值. 解:(1)f(x)=x2+2x+a=(x+1)2+a-1. 当 a1 时,f(x)0,且仅当 a=1,x=-1时,f(x)=0,所以 f(x)是 r上的增函数; 当 a0,f(x)是增函数; 当 x(-1-1 a,-1
18、+1 a)时,f(x)0,f(x)是增函数. (2)由题设知,x1,x2为方程 f(x)=0的两个根, 故有 a0)有一个公共点 a,且在a处两曲线的切线为同一直线 l. (1)求 r; (2)设 m,n是异于 l且与 c及 m都相切的两条直线,m,n 的交点为 d,求 d到 l的距离. 解:(1)设 a(x0,(x0+1)2).对 y=(x+1)2求导得 y=2(x+1), 故 l的斜率 k=2(x0+1). 当 x0=1时,不合题意,所以 x01. 圆心为 m11,2,ma的斜率 k=2001(x1)2x1+. 由 lma知 k k=-1, 即 2(x0+1)2001(x1)2x1+=-1, 解得 x0=0,故 a(0,1), r=|ma|=221(1 0)12+=52,即 r=52. (2)设(t,(t+1)2)为 c 上一点,则在该点处的切线方程为 y-(t+1)2=2(t+1)(x-t), 即 y=2(t+1)x-t2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版酒店食堂档口租赁及食材供应合同范本
- 2025年智能安防系统进场验收与运营管理合同
- 2025企业合作协议范本
- 2025年合同签订权限差异化分级授权机制
- 2025煤炭购销合同样式模板
- 2025年处理合同争议的律师函标准模板示例
- 2025机械设备买卖合同范本
- 2025《FIDIC》施工合同条件在工程项目合同管理中的运用
- 2025合同授权委托书的范本
- 高中英语语法专题:情态动词的用法与区别教案
- 销售公司和生产公司的合作协议
- 新生儿气管导管滑脱的应急预案及处理流程
- 建筑模型设计与制作(第三版)
- 部编版一年级语文上册全册教案(表格)
- 商品精修教案项目5服装精修
- 小升初简历模板2020免费
- 19-雾在哪里ppt市公开课金奖市赛课一等奖课件
- 金融统计分析教材课件
- 《社会主义核心价值观》优秀课件
- DDI定向井难度系数
- 河南省家庭经济困难学生认定申请表
评论
0/150
提交评论