




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选学习资料 - - - 欢迎下载学习必备欢迎下载新人教版初一数学一元一次方程的应用1列一元一次方程解应用题的一般步骤( 1)审题:弄清题意(2)找出等量关系: 找出能够表示此题含义的相等关系 (3) 设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,.然后利用已找出的等量关系列出方程 (4)解方程:解所列的方程,求出未知数的值 ( 5)检验,写答案:检验所求出的未知数的值为否为方程的解,.为否符合实际,检验后写出答案2. 和差倍分问题增长量原有量×增长率现在量原有量增长量3. 等积变形问题常见几何图形的面积.体积.周长运算公式,依据形虽变,但体积不变圆柱体的体积公式v=
2、底面积×高 s·h长方体的体积v长×宽×高 abcr 2 h精品学习资料精选学习资料 - - - 欢迎下载4数字问题一般可设个位数字为a,十位数字为 b,百位数字为 c 十位数可表示为 10b+a, 百位数可表示为100c+10b+a 然后抓住数字间或新数.原数之间的关系找等量关系列方程5市场经济问题(1)商品利润商品售价商品成本价(2)商品利润率商品利润×100%精品学习资料精选学习资料 - - - 欢迎下载(3)商品销售额商品销售价×商品销售量(4)商品的销售利润(销售价成本价)×销售量商品成本价精品学习资料精选学习资料
3、 - - - 欢迎下载(5)商品打几折出售,就为按原标价的百分之几十出售,如商品打8 折出售,即按原标价的 80%出售6行程问题:路程速度×时间时间路程÷速度速度路程÷时间(1)相遇问题:快行距慢行距原距(2)追及问题:快行距慢行距原距(3)航行问题:顺水(风)速度静水(风)速度水流(风)速度逆水(风)速度静水(风)速度水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系7工程问题 : 工作量工作效率×工作时间完成某项任务的各工作量的和总工作量1 8储蓄问题精品学习资料精选学习资料 - - - 欢迎下载利润每个期数内的利息本金
4、×100%利息本金×利率×期数精品学习资料精选学习资料 - - - 欢迎下载1将一批工业最新动态信息输入治理储存网络,甲独做需6 小时,乙独做需4 小时,甲先做 30 分钟,然后甲.乙一起做,就甲.乙一起做仍需多少小时才能完成工作?精品学习资料精选学习资料 - - - 欢迎下载学习必备欢迎下载2兄弟二人今年分别为15 岁和 9 岁,多少年后兄的年龄为弟的年龄的2 倍?3将一个装满水的内部长.宽.高分别为300 毫米, 300 毫米和 80.毫米的长方体铁盒中的水,倒入一个内径为200 毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到 0.1 毫米, 3.14
5、 )4有一火车以每分钟600 米的速度要过完第一.其次两座铁桥,过其次铁桥比过第一 铁桥需多 5 秒,又知其次铁桥的长度比第一铁桥长度的2 倍短 50 米,试求各铁桥的长5有某种三色冰淇淋50 克,咖啡色.红色和白色配料的比为2:3:5,.这种三色冰淇淋中咖啡色.红色和白色配料分别为多少克?6某车间有 16 名工人,每人每天可加工甲种零件5 个或乙种零件4 个在这 16 名工人中,一部分人加工甲种零件, 其余的加工乙种零件 .已知每加工一个甲种零件可获利 16 元,每加工一个乙种零件可获利24 元如此车间一共获利1440 元, .求这一天有几个工人加工甲种零件精品学习资料精选学习资料 - -
6、- 欢迎下载学习必备欢迎下载7某地区居民生活用电基本价格为每千瓦时0.40 元,如每月用电量超过a 千瓦时, 就超过部分按基本电价的70%收费(1)某户八月份用电84 千瓦时,共交电费30.72 元,求 a(2)如该用户九月份的平均电费为0.36元,就九月份共用电多少千瓦?.应交电费为多少元?8某家电商场方案用9 万元从生产厂家购进50 台电视机已知该厂家生产3.种不同型号的电视机,出厂价分别为a 种每台 1500 元, b 种每台 2100 元,c 种每台 2500元(1)如家电商场同时购进两种不同型号的电视机共50 台,用去 9 万元,请你讨论一下商场的进货方案(2)如商场销售一台a 种电
7、视机可获利150 元,销售一台b 种电视机可获利200 元,.销售一台 c种电视机可获利250 元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你挑选哪种方案?答案1解:设甲.乙一起做仍需x 小时才能完成工作精品学习资料精选学习资料 - - - 欢迎下载依据题意,得1 × 1+( 1 + 1) x=1精品学习资料精选学习资料 - - - 欢迎下载6264解这个方程,得x= 11511 =2 小时 12 分5答:甲.乙一起做仍需2 小时 12 分才能完成工作2解:设x 年后,兄的年龄为弟的年龄的2 倍,就 x 年后兄的年龄为15+x,弟的年龄为9+x 由题意,得2
8、15;( 9+x ) =15+x18+2x=15+x, 2x-x=15-18 x=-3精品学习资料精选学习资料 - - - 欢迎下载学习必备欢迎下载答: 3 年前兄的年龄为弟的年龄的2 倍(点拨: -3年的意义,并不为没有意义,而为指以今年为起点前的3 年,为与3.年后具有相反意义的量)3解:设圆柱形水桶的高为x 毫米,依题意,得202· () x=300 × 300× 802精品学习资料精选学习资料 - - - 欢迎下载x 229.3答:圆柱形水桶的高约为229.3 毫米4解:设第一铁桥的长为x 米,那么其次铁桥的长为( 2x-50 )米,.过完第一铁桥所需的时
9、间为分x 600精品学习资料精选学习资料 - - - 欢迎下载过完其次铁桥所需的时间为2x50 分精品学习资料精选学习资料 - - - 欢迎下载依题意,可列出方程600精品学习资料精选学习资料 - - - 欢迎下载x+ 5 = 2 x5060060600解方程 x+50=2x-50得 x=100 2x-50=2 × 100-50=150答:第一铁桥长100 米,其次铁桥长150 米5解:设这种三色冰淇淋中咖啡色配料为2x 克,那么红色和白色配料分别为3x 克和 5x 克 依据题意,得2x+3x+5x=50解这个方程,得x=5于为 2x=10, 3x=15, 5x=25答:这种三色冰淇
10、淋中咖啡色.红色和白色配料分别为10 克, 15 克和 25 克6解:设这一天有x 名工人加工甲种零件,就这天加工甲种零件有5x 个,乙种零件有4(16-x )个依据题意,得16×5x+24 ×4( 16-x )=1440解得 x=6答:这一天有6 名工人加工甲种零件7解:( 1)由题意,得0.4a+( 84-a )× 0.40 × 70%=30.72解得 a=60( 2)设九月份共用电x 千瓦时,就0.40× 60+( x-60 )× 0.40 ×70%=0.36x解得 x=90所以 0.36 × 90=32.4
11、0 (元)答:九月份共用电90 千瓦时,应交电费32.40 元8解:按购a, b 两种, b, c 两种, a,c两种电视机这三种方案分别运算,设购 a 种电视机x 台,就 b 种电视机y 台(1)当选购a, b 两种电视机时,b 种电视机购( 50-x )台,可得方程精品学习资料精选学习资料 - - - 欢迎下载学习必备欢迎下载1500x+2100( 50-x ) =90000即 5x+7(50-x ) =300 2x=50x=2550-x=25当选购 a, c 两种电视机时,c 种电视机购( 50-x )台,可得方程 1500x+2500 ( 50-x ) =900003x+5( 50-x
12、 ) =1800 x=3550-x=15当购 b, c 两种电视机时,c 种电视机为(50-y )台可得方程 2100y+2500 ( 50-y ) =9000021y+25(50-y ) =900, 4y=350,不合题意由此可挑选两种方案:一为购a, b 两种电视机25 台;二为购a 种电视机35 台, c 种电视机 15 台(2)如挑选( 1)中的方案,可获利150× 25+250× 15=8750(元)如挑选( 1)中的方案,可获利150× 35+250× 15=9000(元)9000>8750故为了获利最多,挑选其次种方案一元一次方程应用
13、题为初一数学学习的重点,也为一个难点;主要困难表达在两个方面:一为难以从实际问题中找出相等关系,列出相应的方程;二为对数量关系稍复杂的方程,经常理不清晰基本量,也不知道如何用含未知数的式子来表示出这些基本量的相等关系,导致解题时无从下手;事实上,方程就为一个含未知数的等式;列方程解应用题,就为要将实际问题中的一些数量关系用这种含有未知数的等式的形式表示出来;而在这种等式中的每个式子又都有自身的实际意义,它们分别表示题设中某一相应过程的数量大小或数量关系;由此,解方程应用题的关键就为要“抓住基本量,找出相等关系”;一. 列方程解应用题的步骤:审题: 懂得题意; 1.弄清题目中的对象,找出题目中代
14、表着对象之间关系的句子和词;2.弄清题目中有什么,要我们干什么,找出有什么(已知)和干什么(未知)之间的关系;从应用题来看一个题一般存在这两个以上的关系,这两关系一为题目中给出,二为题目中只给出一个,另一个关系为我们日常生活中常用到的一些等量关系(例如:路程=速度×时间等)所以解应用题关键为找出题目的等量关系,先就要长到代表等量关系的句子和词语(如:谁比谁多,谁比谁少,谁为谁的几倍,谁为谁的几分之几等);解题经常用横线画出代表等量关系的句子和词语;设元 (未知数);直接未知数:题目中问什么设什么;间接未知数:先通过设未知数求出与与问题相关的量,然后再通过一些关系求出题目中的问题;(往
15、往二者兼用) ;一般来说,未知数越多,方程越易列,但越难解;但一元一次方程一般都只设一个未知数列一个方程;用含未知数的代数式表示相关的量;精品学习资料精选学习资料 - - - 欢迎下载学习必备欢迎下载列方程: 查找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程;一般地,未知数个数与方程个数为相同的;解方程( 6)检验:一为检验为否使方程有意义,例如分母不为0 等;二为检验为否使实际实际问题有意义(如;2/3 个人等);( 7)答题 :回答出题目所问;二.常见的常识性等量关系及关键词语( 1)和.差.倍.分问题;此问题中常用“多.少.大.小.几分之几”或“增加.削减.缩小”
16、等等词语表达等量关系;审题时要抓住关键词,确定标准量与比校量,并留意每个词的微小差别;( 2)等积变形问题;此类问题的关键在“等积 ”上,为等量关系的所在,必需把握常见几何图形的面积.体积公式; “等积变形”为以外形转变而体积不变为前提;常用等量关系为:外形面积变了,周长没变;原料体积成品体积;(3)调配问题;从调配后的数量关系中找等量关系,常见为“和.差.倍.分”关系,要留意调配对象流淌的方向和数量;这类问题要搞清人数的变化,常见题型有:既有调入又有调出;只有调入没有调出,调入部分变化,其余不变;只有调出没有调入,调出部分变化,其余不变;调配与比例问题在日常生活中特别常见,比如合理支配工人生
17、产,按比例选取工程材料,调剂人数或货物等;调配问题中关键为要熟悉清晰部重量.总量以及两者之间的关系;在调配问题中主要考虑“总量不变”;而在比例问题中就主要考虑总量与部重量之间的关系,或为量与量之间的比例关系;例 14. 甲.乙两书架各有如干本书,假如从乙架拿100 本放到甲架上,那么甲架上的书比乙架上所剩的书多5 倍,假如从甲架上拿100 本书放到乙架上,两架全部书相等;问原先每架上各有多少书?讲评:此题难点为正确设未知数,并用含未知数的代数式将另一书架上书的本数表示出来;在调配问题中, 调配后数量相等,即将原先多的一方多出的数量进行平分;由题设中 “从甲书架拿100本书到乙书架,两架书相等”
18、,可知甲书架原有的书比乙书架上原有的书多200 本;故设乙架原有x 本书,就甲架原有(x+200 )本书;从乙架拿100 本放到甲架上,乙架剩下的书为(x 100)本,甲架书变为 ( x+200)+100 本;又甲架的书比乙架多5 倍,即为乙架的六倍,有( x+200)+100=6( x 100) x=180x+200=380例 15. 教室内共有灯管和吊扇总数为13 个; 已知每条拉线管3 个灯管或2 个吊扇, 共有这样的拉线 5 条,求室内灯管有多少个?精品学习资料精选学习资料 - - - 欢迎下载学习必备欢迎下载讲评:这为一道对开关拉线的安排问题 ;设灯管有x 支,就吊扇有(13)个,灯
19、管拉线为条,吊扇拉线为条,依题意“共有条拉线”,有+ x=9例 16. 某车间 22 名工人参与生产一种螺母和螺丝;每人每天平均生产螺丝120 个或螺母 200 个,一个螺丝要配两个螺母,应安排多少名工人生产螺丝,多少名工人生产螺母,才能使每天生产的产品刚好配套?讲评: 产品配套(工人调配)问题,要依据产品的配套关系(比例关系)正确地找到它们间得数量关系,并依此作相等关系列出方程;此题中,设有x 名工人生产螺母,生产螺母的个数为200x 个,就有( 22 x )人生产螺丝,生产螺丝的个数为120( 22 x )个;由“一个螺丝要配两个螺母” 即“螺母的个数为螺丝个数的2 倍”,有200x=2
20、×120( 22 x) x=1222 x=10例 17.地板砖厂的坯料由白土.沙土.石膏.水按25 2 16 的比例配制搅拌而成;现已将前三种料称好,公5600 千克,应加多少千克的水搅拌?前三种料各称了多少千克?讲评:解决 比例问题 的一般方法为:按比例设未知数,并依据题设中的相等关系列出方程进行求解;此题中,由四种坯料比例25 2 1 6,设四种坯料分别为25x.2x. x.6x 千克,由前三种坯料共 5600 千克,有25x+2x+x=5600x=200 25x=50002x=400x=2006x=1200例 18.苹果如干个分给小伴侣,每人m个余 14 个,每人9 个,就最终
21、一人得6 个;问小伴侣有几人?讲评:这为一个安排问题 ;设小伴侣x 人,每人分m个苹果余14 个,苹果总数为mx+14,每人9 个苹果最终一人6 个,就苹果总数为9(x ) +;苹果总数不变,有mx+14 9( x ) + x.m均为整数 9例 19.出口 1 吨猪肉可以换5 吨钢材, 7 吨猪肉价格与4 吨砂糖的价格相等,现有288 吨砂糖,把这些砂糖出口,可换回多少吨钢材?讲评:此题可转换成一个比例问题 ;由猪肉钢材=15,猪肉砂糖=7 4,得猪肉钢材砂糖 =7 354,设可换回钢材x 吨,就有x 288=35 4 x=26207. 需设中间(间接)未知数求解的问题一些应用题中,设直接未知
22、数很难列出方程求解,而依据题中条件设间接未知数,却较简单列出方程,再通过中间未知数求出结果;例 20. 甲.乙.丙.丁四个数的和为43,甲数的2 倍加 8,乙数的3 倍,丙数的4 倍,丁数的5 倍减去 4,得到的4 个数却相等;求甲.乙.丙.丁四个数;讲评:此题中要求4 个量,在后面可用方程组求解;如用一元一次方程求解,假如设某个数为未知数,其余的数用未知数表示很麻烦;这里由甲.乙.丙.丁变化后得到的数相等,故设这个相等的数为x ,就甲数为,乙数为,丙数为,丁数为,由四个数的和为43,有+=43x = 36精品学习资料精选学习资料 - - - 欢迎下载学习必备欢迎下载=14=12=9=8例 2
23、1. 某县中同学足球联赛共赛10 轮(即每队均需竞赛10 场),其中胜1 场得 3 分,平 1 场得 1 分,负 1 场得 0 分;向明中学足球队在这次联赛中所负场数比平场数少3 场,结果公得19 分;向明中学在这次联赛中胜了多少场?讲评: 此题中如直接将胜的场次设为未知数,无法用未知数的式子表示出负的场数和平的场数, 但设平或负的场数,就可表示出胜的场数;故设平x 场,就负x 3 场,胜 10( +)场,依题意有310 ( x+x 3) +x=19x=4 10 ( +) =5(4)行程问题;要把握行程中的基本关系:路程速度×时间;相遇问题 (相向而行),这类问题的相等关系为:各人走
24、路之和等于总路程或同时走时两人所走的时间相等为等量关系;甲走的路程+乙走的路程 =全路程追及问题 (同向而行),这类问题的等量关系为:两人的路程差等于追及的路程或以追准时间为等量关系;同时不同地:甲的时间=乙的时间甲走的路程 -乙走的路程 =原先甲.乙相距的路程同地不同时;甲的时间=乙的时间 -时间差甲的路程 =乙的路程环形跑道上的相遇和追及问题:同地反向而行的等量关系为两人走的路程和等于一圈的路程;同地同向而行的等量关系为两人所走的路程差等于一圈的路程;船(飞机)航行问题:相对运动的合速度关系为:顺水(风)速度静水(无风)中速度水(风)流速度;逆水(风)速度静水(无风)中速度水(风)流速度;
25、车上(离)桥问题:车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长;车离桥指车头离开桥到车尾离开桥的一段路程;所走的路程为一个成长车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长- 车长行程问题可以采纳画示意图的帮助手段来帮忙懂得题意,并留意两者运动时动身的时间和地点;查找的相等关系有:路程关系.时间关系.速度关系;在不同的问题中,相等关系为敏捷多变的;如相遇问题中多以路程作相等关系,而对有先后次序的问题却通常以时间作相等关系,在航行问题中许多时候仍用速度作相等关系;例某队伍450 米长,以每分钟90 米速
26、度前进,某人从排尾到排头取东西后,立刻返回排尾,速度为3 米/ 秒;问来回共需多少时间?精品学习资料精选学习资料 - - - 欢迎下载学习必备欢迎下载讲评:这一问题实际上分为两个过程:从排尾到排头的过程为一个追及过程,相当于最终一个人追上最前面的人;从排头回到排尾的过程就为一个相遇过程,相当于从排头走到与排尾的人相遇;在追及过程中,设追及的时间为x 秒,队伍行进(即排头)速度为90 米/ 分=1.5 米/ 秒,就排头行驶的路程为1.5x米;追及者的速度为3 米/ 秒,就追及者行驶的路程为3x 米;由追及问题中的相等关系“追逐者的路程被追者的路程=原先相隔的路程”,有:3x 1.5x=450 x
27、=300在相遇过程中,设相遇的时间为y 秒,队伍和返回的人速度未变,故排尾人行驶的路程为1.5y 米,返回者行驶的路程为3y米,由相遇问题中的相等关系“甲行驶的路程+乙行驶的路程=总路程”有:3y+1.5y=450 y=100故来回共需的时间为x+y=300+100=400 (秒)例 2 汽车从 a 地到 b 地,如每小时行驶40km,就要晚到半小时:如每小时行驶45km,就可以 早到半小时;求a.b 两地的距离;讲评:先动身后到.后动身先到.快者要早到慢者要晚到等问题,我们通常都称其为“先后问题”;在这类问题中主要考虑时间量,考察两者的时间关系,从相隔的时间上找出相等关系;此题中,设 a.b
28、 两地的路程为x km ,速度为40 km/ 小时,就时间为小时;速度为45 km/ 小时,就时间为小时,又早到与晚到之间相隔1 小时,故有= 1x = 360例 3 一艘轮船在甲.乙两地之间行驶,顺流航行需6 小时,逆流航行需8 小时,已知水流速度每小时 2 km ;求甲.乙两地之间的距离;讲评:设甲.乙两地之间的距离为x km ,就顺流速度为km/ 小时,逆流速度为km/小时,由航行问题中的重要等量关系有: =+2 x = 96( 5)工程问题;其基本数量关系:工作总量工作效率×工作时间;合做的效率各单独做的效率的和;当工作总量未给出详细数量时,常设总工作量为“1”,分析时可采纳
29、列表或画图来帮忙懂得题意;精品学习资料精选学习资料 - - - 欢迎下载学习必备欢迎下载工程问题中, 一般常将全部工作量看作整体1,假如完成全部工作的时间为t ,就工作效率为;常见的相等关系有两种:假如以工作量作相等关系,部分工作量之和=总工作量;假如以时间作相等关系,完成同一工作的时间差=多用的时间;在工程问题中,仍要留意有些问题中工作量给出了明确的数量,这时不能看作整体1,此时工作效率也即工作速度;例 4 加工某种工件,甲单独作要20 天完成,乙只要10 就能完成任务,现在要求二人在12天内完成任务;问乙需工作几天后甲再连续加工才可正好按期完成任务?讲评:将全部任务的工作量看作整体1,由甲
30、.乙单独完成的时间可知,甲的工作效率为,乙的工作效率为,设乙需工作x天,就甲再连续加工(12 x )天,乙完成的工作量为,甲完成的工作量为,依题意有+=1 x =8例 5 收割一块麦地,每小时割4 亩,估量如干小时割完;收割了后、 改用新式农具收割,工作效率提高到原先的1.5 倍;因此比估量时间提前1 小时完工;求这块麦地有多少亩?讲评:设麦地有x 亩,即总工作量为x 亩,改用新式工具前工作效率为4 亩/ 小时,割完x 亩估量时间为小时, 收割亩工作时间为/4=小时; 改用新式工具后,工作效率为1.5 × 4=6亩/ 小时,割完剩下亩时间为/6=小时,就实际用的时间为(+)小时,依题
31、意“比估量时间提前1 小时完工”有(+) =1 x =36例 6.一水池装有甲.乙.丙三个水管,加.乙为进水管,丙为排水管,甲单独开需10小时注满一池水,乙单独开需6 小时注满一池水,丙单独开15 小时放完一池水;现在三管齐开,需多少时间注满水池?精品学习资料精选学习资料 - - - 欢迎下载学习必备欢迎下载讲评: 由题设可知, 甲.乙.丙工作效率分别为.(进水管工作效率看作正数,排水管效率就记为负数),设小时可注满水池,就甲.乙.丙的工作量分别为, . ,由三水管完成整体工作量 1,有 + 1 x = 5(6)溶液(混合物)问题溶液(混合物)问题有四个基本量:溶质(纯洁物).溶剂(杂质).溶
32、液(混合物).浓度(含量);其关系式为: 溶液 =溶质 +溶剂(混合物 =纯洁物 +杂质);浓度 = × 100 =× 100【纯度(含量)=× 100 =× 100】;由可得到:溶质=浓度×溶液 =浓度×(溶质 +溶剂);在溶液问题中关键量为“溶质”:“溶质不变”,混合前溶质总量等于混合后的溶质量,为许多方程应用题中的主要等量关系;例 11. 把 1000 克浓度为80的酒精配成浓度为60的酒精, 某同学未经考虑先加了300 克水;试通过运算说明该同学加水为否过量?假如加水不过量,就应加入浓度为20的酒精多少克? 假如加水过量,就需
33、再加入浓度为95的酒精多少克?讲评:溶液问题中浓度的变化有稀释(通过加溶剂或浓度低的溶液,将浓度高的溶液的浓度降低).浓化(通过蒸发溶剂.加溶质.加浓度高的溶液,将低浓度溶液的浓度提高)两种情形;在浓度变化过程中主要要抓住溶质.溶剂两个关键量,并结合有关公式进行分析,就不难找到相等关系,从而列出方程;此题中,加水前,原溶液1000 克,浓度为80,溶质(纯酒精)为1000× 80克;设加x克水后,浓度为60,此时溶液变为(1000+x)克,就溶质(纯酒精)为(1000+x )× 60克;由加水前后溶质未变,有(1000+x)× 60=1000× 80 x
34、 = 300该同学加水未过量;设应加入浓度为 20的酒精 y 克,此时总溶液为( 1000+300+y )克,浓度为 60,溶质(纯酒精)为( 1000+300+y )× 60;原两种溶液的浓度分别为 1000 × 80. 20y,由混合前后溶质量不变,有( 1000+300+y )× 60=1000 × 80 +20 y=50( 7)经济问题与生活.生产实际相关的经济类应用题,为近年中考数学创新题中的一个突出类型;经济类问题主要表达为三大类:销售利润问题.优惠(促销)问题.存贷问题;这三类问题的基本量精品学习资料精选学习资料 - - - 欢迎下载学习必
35、备欢迎下载各不相同,在查找相等关系时,肯定要联系实际生活情形去摸索,才能更好地懂得问题的本质,正确列出方程;销售利润问题;利润问题中有四个基本量:成本(进价).销售价(收入).利润.利润率;基本关系式有:利润=销售价(收入)成本(进价)【成本(进价)=销售价(收入)利润】;利润率 =【利润 =成本(进价)×利润率】;在有折扣的销售问题中,实际销售价=标价×折扣率;打折问题中常以进价不变作相等关系;优惠(促销)问题;日常生活中有许多促销活动,不同的购物(消费)方式可以得到不同的优惠;这类问题中,一般从“什么情形下成效一样分析起”;并以求得的数值为基准,取一个比它 大的数及一个
36、比它小的数进行检验,猜测其变化趋势;存贷问题 ;存贷问题与日常生活亲密相关,也为中考命题时最好选取的问题情形之一;存贷问题中有本金.利息.利息税三个基本量,仍有与之相关的利率.本息和.税率等量;其关系式有:利息 =本金×利率×期数;(留意利率有日利率.月利率和年利率,年利率月利率×12日利率×365;)利息税=利息×税率;本息和(本利)=本金 +利息利息税;例 7. 某商店先在广州以每件15 元的价格购进某种商品10 件,后来又到深圳以每件12.5 元的价格购进同样商品40 件;假如商店销售这种商品时,要获利12,那么这种商品的销售价应定多 少
37、?讲评: 设销售价每件x 元,销售收入就为 ( 10+40)x 元,而成本 (进价) 为( 5× 10+40×12.5 ),利润率为12,利润为( 5× 10+40× 12.5 )× 12;由关系式有( 10+40) x( 5× 10+40×12.5 ) =(5× 10+40× 12.5 )× 12 x=14.56例 8. 某种商品因换季预备打折出售,假如按定价七五折出售,就赔25 元,而按定价的九折出售将赚 20 元;问这种商品的定价为多少?讲评:设定价为x 元,七五折售价为75x ,利润为
38、25 元,进价就为75x ( 25)=75 x+25;九折销售售价为90 x ,利润为20 元,进价为90 x 20;由进价肯定,有75 x+25=90 x 20 x = 300例 9.李勇同学假期打工收入了一笔工资,他立刻存入银行,存期为半年;整存整取,年利息为2.16 ;取款时扣除20利息税;李勇同学共得到本利504.32元;问半年前李勇同学共存入多少元?讲评: 此题中要求的未知数为本金;设存入的本金为x 元,由年利率为2.16 ,期数为 0.5 年,就利息为0.5 × 2.16 x ,利息税为20× 0.5 × 2.16 x,由 存贷问题 中关系式有x +0
39、.5× 2.16 x 20× 0.5 × 2.16 x=504.32 x = 500例 10. 某服装商店出售一种优惠购物卡,花200 元买这种卡后,凭卡可在这家商店8 折购物,什么情形下买卡购物合算?讲评: 购物优惠 先考虑“什么情形下情形一样”;设购物x 元买卡与不买卡成效一样,买卡花费金额为( 200+80 x)元,不买卡花费金额为x 元,故有200+80x = xx = 1000当 x 1000 时,如 x=2000买卡消费的花费为:200+80× 2000=1800(元)不买卡花费为:2000(元)此时买卡购物合算;精品学习资料精选学习资料 -
40、 - - 欢迎下载学习必备欢迎下载当 x 1000 时,如 x=800买卡消费的花费为:200+80× 800=840(元)不买卡花费为:800(元)此时买卡不合算;(8)数字问题;要正确区分“数”与“数字”两个概念,这类问题通常采纳间接设法,常见的解题思路分析为抓住数字间或新数.原数之间的关系查找等量关系;列方程的前提仍必需正确地表示多位数的代数式,一个多位数为各位上数字与该位计数单位的积之和;数字问题为常见的数学问题;一元一次方程应用题中的数字问题多为整数,要留意数位.数位上的数字.数值三者间的关系:任何数=(数位上的数字×位权),如两位数=10a+b;三位数=100a
41、+10b+c;在求解数字问题时要留意整体设元思想的运用;例 12.一个三位数,三个数位上的和为17,百位上的数比十位上的数大7,个位上的数为十位上的数的3 倍;求这个数;讲评:设这个数十位上的数字为x ,就个位上的数字为3x,百位上的数字为(x+7),这个三 位数就为100( x+7 ) +10x+3x ;依题意有( x+7 ) +x+3x=17 x=2 100( x+7) +10x+3x=900+20+6=926例 13.一个六位数的最高位上的数字为1,假如把这个数字移到个位数的右边,那么所得的数等于原数的 3 倍,求原数;讲评:这个六位数最高位上的数移到个位后,后五位数就相应整体前移1 位
42、,即每个数位上的数字被扩大10 倍,可将后五位数看成一个整体设未知数;设除去最高位上数字1 后的 5 位数为 x ,就原数为10+x,移动后的数为10x+1,依题意有10x+1=10+x x = 42857就原数为142857(9)年龄问题其基本数量关系:大小两个年龄差不会变;这类问题主要查找的等量关系为:抓住年龄增长,一年一岁,人人公平;(10)比例安排问题:这类问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式;常用等量关系:各部分之和总量;(11). 设而不求(设中间参数)的问题一些应用题中, 所给出的已知条件不够满意基本量关系式的需要,而且其中某些量不需要求解;这时,我
43、们可以通过设出这个量,并将其看成已知条件,然后在运算中消去;这将有利于我们对问题本质的懂得;例 22. 一艘轮船从重庆到上海要5 昼夜,从上海驶向重庆要7 昼夜,问从重庆放竹牌到上海要几昼夜?(竹排的速度为水的流速)精品学习资料精选学习资料 - - - 欢迎下载学习必备欢迎下载分析:航行问题要抓住路程.速度.时间三个基本量,一般有两种已知量才能求出第三种未知量;此题中已知时间量,所求也为时间量,故需在路程和速度两个量中设一个中间参数才能列出方程;此题中考虑到路程量不变,故设两地路程为a 公里,就顺水速度为,逆水速度为,设水流速 度 为x , 有 + , 又 设 竹 排 从 重 庆 到 上 海
44、的 时 间 为y昼 夜 ,有· x=ax=35例 23.某校两名老师带如干名同学去旅行,联系两家标价相同的旅行社,经洽谈后,甲旅行社的优惠条件为: 1 名老师全部收费,其余 75 折收费; 乙旅行社的优惠条件为:全部师生8 折优惠;当同学人数等于多少人时,甲旅行社与乙旅行社收费价格一样?如核算结果,甲旅行社的优惠价相对乙旅行社的优惠价要廉价,问同学人数为多少?讲评:在此题中两家旅行社的标价和同学人数都为未知量,又都为列方程时不行少的基本量,但标价不需求解;中设标价为a 元,同学人数x 人,甲旅行社的收费为a+0.75a ( x+1 )元,乙旅行社收费为0.8a ( x+2)元,有a+
45、0.75a ( x+1) =0.8a ( x+2 ) x=3中设同学人数为y 人,甲旅行社收费为a+0.75a ( x+1 )元,乙旅行社收费为0.8a (x+2 )元,有0.8a ( x+2) a+0.75a (x+1 )× 0.8a ( x+2) x=8;列方程解应用题第一讲 和.差.倍.分,盈亏等实际问题的解法1和.差.倍.分问题例 1 小明做了一个试验,把黄豆育成豆芽后,重量可以增加 7.5 倍,假如小明想要得到 3400 千克黄豆芽,需要多少千克黄豆?2盈亏问题例 2 用化肥如干千克给一块麦田追肥,每公顷6kg 仍差 17 kg ;每公顷 5kg 就余下3kg问这块麦田有多
46、少公顷?共有化肥多少千克?3劳力调配问题例 3 在甲处劳动的有 52 人,在乙处劳动的有 23 人,现从甲.乙两地共调 12 人到丙处劳动, 使在甲处劳动的人数为在乙处劳动人数的 2 倍,求应当从甲. 乙两处各调走多少人?4产品配套问题例 4 星光服装厂接受生产一些某种型号的同学服装的订单,已知每 3m长的某种布料精品学习资料精选学习资料 - - - 欢迎下载学习必备欢迎下载可做上衣 2 件或裤子 3 条,一件上衣和一条裤子为一套,方案用750 m长的这种布料生产同学服;应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套 5竞赛积分问题例 5 在一次有 12 队参与的足球循环赛 每两个
47、队之间赛且只赛一场) ,规定胜一场计 3 分,平一场计 1 分,负一场计 0 分,某队在这次循环赛中胜场比负场多2 场,结果共积 18 分,问该对战平机场?6容积(体积)问题例 6 一个容器装 47 l 水,另一个容器装58 l 水;假如将其次个容器的水倒满第一个容器,那么其次个容器剩下的水相当于这个容器容量的一半; 假如将第一个容器的水倒满其次个容器, 那么第一个容器的水相当于这个容器容积的,求这两个容器的容量各为多少?基础达标演练l一桶油连桶重8 kg ,油用去一半后连桶重4.5 kg ,就桶中原有油多少 .2 在甲处工作的有272 人,在乙处工作的有196 人,假如乙处工作人数为甲处工作
48、人数的 1/3 ,应从乙处调多少人到甲处.3 某课外爱好小组的女生占全组人数的1/3 ,再加人 6 名女生后,女生人数就占原先的一半,问此课外爱好小组原有多少人.4 甲.乙两仓共有大米50 t ,从甲仓取出 1/10 ,从乙仓取出 2/5 ,就两仓所剩大米相等;就甲仓原有大米多少t.5 甲.乙两人各有钱如干元,如甲给乙5 元,就甲.乙两人的钱数相等;如乙给甲40 元就甲的钱数为乙剩下的4 倍,甲原有的钱数多少 .6 41 人参与运土劳动,有30 根扁担,要支配多少人抬.多少人挑,可使扁担和人数相配不多不少 .7 某旅行团外出旅行,假如每辆汽车坐45 人,那么有 10 人没有座位;假如每辆汽车坐
49、 60 人,那么空出一辆车,求有多少辆汽车?8 某工地调来 72 人挖土和运土, 已知 3 人挖的土 1 人恰好能全部运走, 怎样调配劳动力才能使挖出来的土能够准时运走且不窝工9 用绳量井深,三折而量,绳长比井深多2 m,四折而量,绳长比井深少1 m,求绳子长?井深?10 有两根绳子,第一根长110m,其次根绳长 80m,两根绳子剪去相同的长度后,第一根绳子的长度为其次根绳子的3 倍,求每根绳子剪掉多少米?11 一辆翻斗车向工地运输一堆石子,第一天运了这对石子的1/3 仍多 2 吨,其次天运了剩下的 1/2 少 1 吨,这时仍剩下38 吨石子没运完,这对石子原有多少吨?12 某企业原先治理人员
50、与营销人数之比为3:2,总人数为 180 人,为了扩大市场,从治理人员中抽调多少人参与营销工作,就能使营销人员人数为治理人员人数的2 倍? 13 把一些图书分给某班同学阅读,假如每人分3 本,就余 20 本;假如每人分 4 本,就仍缺 25 本,这个班有多少同学 .14 甲.乙.丙三队合修一条大路, 方案出 280 人,假如甲队人数为乙队人数的一半, 丙队人数为乙队的2 倍,问三队各有多少人 .15 某车间有 60 名工人, 生产一种螺栓和螺帽, 平均每人每小时能生产螺栓15 个或螺帽 10 个,应安排多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽配套. 每个螺栓配两个螺帽 精品学习资
51、料精选学习资料 - - - 欢迎下载学习必备欢迎下载16 爷爷与孙子下棋,爷爷赢1 盘记 1 分,孙子赢 1 盘记 3 分,下了 8 盘后两人得分相等,他们各赢了多少盘.17 某校七年级选出男生的和 12 名女生参与数学竞赛,余下的男生人数恰好为所余下的女生人数的2 倍已知该年级共有同学156 人,问男生.女生各有多少人.18 甲工厂有某种原料120t ,乙工厂有同样原料96t ,甲厂每天用原料15t ,乙厂每天用原料 90 t ,问多少天后,两厂剩下的原料相等.19 有桔子.梨.苹果三种水果如干,梨的个数为桔子个数的4/5 ,苹果个数为桔子个数的 2/3 ,梨的个数比苹果多2 个,问筐内三种
52、水果共有多少个.20 某沿海发达镇 2006 年的人均收人为16000 元,比 2004 年的人均收入翻两番仍多2000 元,该镇 2004 年人均收人多少元?21 李大爷到商店购鞋,仅知道自己的老尺码为43 码,而不知道自己应穿多大的新鞋号,他记得老尺码加上一个数后折半运算即为新鞋号,由于他儿子鞋号的新老尺码都为整数且简单记住, 因而他知道儿子穿鞋的老尺码为40 号,新鞋号为 25 号,现在请你帮忙李大爷运算一下他的新鞋号为多少.22 某种中药含有甲.乙.丙.丁四种草药成分,这四种成分的质量比为0.7 :1:2:4.7 ,现要配制这种中药2100 g ,四种草药分别要多少克. 23 阅读以下
53、材料,并沟通体会诗仙李白本性嗜酒,豪爽.旷达,向有斗酒诗百篇的美誉,为唐代饮中八仙之一,民间流传李白买酒歌谣,为一道好玩的数学问题:李白街上走,提壶去买酒;遇店加一倍,见花喝一斗;三遇店和花,喝完壶中酒,试问壶中原有多少酒?24 小明和小颍同学在课多外学习中, 用 20 张白卡纸做包装盒, ,每张白卡纸可以做盒身 2 个或者做盒底盖 3 个;现 1 个盒身和 2 个底盖恰好做成一个包装盒, 为了充分利用材料,使做成的盒身和底盖正好配套,小明和小颖设计了如下两种方案;方案一:把这些白卡纸分成两部分,一部分做盒身,一部分做盒底方案二:先把一张白卡纸适当套裁出一个盒身和一个盒底,余下自卡纸分成两部分,一部分盒身,一部分做底盖,想一想,小明和小颍设计的方案为否可行·其次讲工程类应用题的解法工程问题涉及的基本量有:工作总量,工作效率,工作时间它们之间的关系为,工作总量=各部分工作量之和 =1;工作量 =工作效率 ×工作时间1 常见的工程问题这类题的关键为抓住“工作总量=工作时间×工作效率”来找等量关系列程,一般把工作总量看成单位1例 1 一项工程,甲单独完成需要9 天,乙单独完成需要12 天,丙单独完成需要15天,如甲.丙先做 3 天后,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年对讲机租赁及培训与售后服务协议
- 2025年度破碎工程临时用电服务合同规范范本
- 2025年度企业电脑病毒防护与清除服务合同
- 2025年定制建材代购代理协议
- 2025版水沟清洁外包及环境卫生管理合同
- 2025版数字经济股权投资与转让协议
- 2025测量合同范本:地质勘探项目合同模板
- 2025版全新教育培训机构合作移交协议下载
- 2025版人力资源和社会保障厅编外用工服务与管理合同
- 2025标准婚庆策划中介服务协议
- GB/T 35147-2017石油天然气工业机械动力传输挠性联轴器一般用途
- GB/T 32911-2016软件测试成本度量规范
- GB/T 10125-2021人造气氛腐蚀试验盐雾试验
- T-JSYLA 00007-2022 江苏省智慧公园建设指南
- 员工宿舍的整改方案
- 《压力容器安全技术监察规程》
- 数控加工中心培训课件
- 《思想政治教育专业导论》课程教学大纲
- 自动控制原理全套ppt课件(完整版)
- 智慧燃气安全监管平台建设方案
- 生物化学与分子生物学(全套课件230P)
评论
0/150
提交评论