下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、浩瀚补课班 必修一第二章唐海亮 1 / 4 高中数学必修一第二 章测试题(2) 、选择题: 7.若 aq1,0 a2 时恒有y 1 , 则 a的取值范围是 8 函数 y= _ lg x+ lg(5 3x)的定义域是 A A a 2 2 且 a 1 B . 1 0 或 1 a 2 C. 1 a 2 2 B 0, | 1 或0 D. a 0 1 a 0时, b和y b ax 申y 9. 0 0 ( 1 2 函数y 4.当a 的图象只可能是 5 1,)l A/ V 图象过点 幂函数的 递 J (0 0, 5、 设 y1 0.9 0.48 4 ,y2 8 ,y3 1 2 ,则 D. ( ) B、 1A
2、、y y1 y2 y2 y1 y3 、 c、y y3 y2 D、 y1 y2 为 6.下列函数中,在区间 (0, 十0 )上为增 ( 函 数 的 是 ( ) B. A . y = In (x + 2) B. y= -,x+ 1 D. C y = 1 2 x 11 1.5 ) A C oo 函数 1 4, j l则 它的单 间 是工 0 J + oo ) D oo , 0) 2, 增 区 ) y= 2+ log 2(x2 + 3)(x 1)的值域 2) 3, +o ) (2 4 1 函数 y= ax (a0, a oo ) 且 a 工 1)的图象 浩瀚补课班 必修一第二章唐海亮 2 / 4 3x
3、 logx3v logy3 log4y 二、填空题 13.函数 f(x)= ax_1+ 3 的图象一定过定点 P,贝 V P 点的坐标是 14. 函数 f(x) = log5(2x+ 1)的单调增区间是 15. 设函数 f(x)是定义在 R上的奇函数, 若当 x (0, I )时,f(x)= lg x,则 满足 f(x) 0 的 x 的取值范围是 13.将函数y 2x的图象向左平移一个单 位,得到图象 C1,再将 C1向上平移 一个单位得到图象 C2,作出 C2关于 直线 y=x 对称的图象 C3,贝 V C3的解 析式为 . 三、解答题 17. 化简下列各式: 2lg 2 + lg 3 1
4、1 1 + 2 lg 0.36 + 4 16 18. 已知 f(x)为定义在1,1上的奇函数, 1 a 当 x 1,0时,函数解析式 f(x) = 43 (a R). (1) 写出 f(x)在 0,1上的解析式; (2) 求 f(x)在0,1上的最大值. 4 19. 已知 x 1 且 x工 3, f(x) = 1 + logx3, g(x) = 2logx2,试比较 f(x)与 g(x)的大小. 1 20. 已知函数 f(x)= 2x尹 (1) 若 f(x) = 2,求 x 的值; (2) 若 2tf(2t)+ mf(t) 0 对于 t 1,2恒 成立,求实数 m的取值范围. 21 .已知函数
5、 f(x)= axr(a0 且 a工 1). (1) 若函数 y = f(x)的图象经过 P(3,4) 点,求 a的值; (2) 若 f(lg a) = 100,求 a 的值; 1 (3) 比较 f lg 云 与 f( 2.1)的大小, 并写出比较过程. 10 x 10 x 22.已矢廿 f(x)= 10X十 10-X. (1) 求证 f(x)是定义域内的增函数; (2) 求f(x)的值域. 答案 一. 选择题 1 5.BDAAC 6 10.ACCCC 11 12.DC 二. 填空题 1 “ / 13 . (1,4) 14. -,+m 15 .( 1,0) U (1 ,+8 )16. y lo
6、g2(x 1) 13y log4x D. 1 1 Qpxv(4)y (1)(0.064 5) -2-53_ n; A 可 浩瀚补课班 必修一第二章唐海亮 3 / 4 2-1= . 2lg 2 + lg 3 1 + 2ig .62+4ig 24 2lg 2 + lg 3 2X 3 1+lg 百 + 1 2 3 4 5 6g 2 1 + lg 2 + lg 3 lg 1 + lg 2 =2lg 2 + lg 3 = 1 =2lg 2 + lg 3 =. 18. 解 (1) / f(x)为定义在1,1上的奇函 数,且 f(x)在 x= 处有意义, -f( ) = , 1 a 即 f( ) = 4 1
7、 a= .a = I. 设 x 0,1,则一 x 1, . 1 1 二 f( x)= 4x 2x = 4x 2x. 又 f( x) = f(x), f(x)= 4x 2x. f(x) = 2x 4x. (2)当 x ,1 , f(x) = 2x 4x= 2x (2x)2, 设 t= 2x(t ),则 f(t)=t t2. x ,1 , t 1,2 当 t= 1 时,取 最大值,最大值为 1 1 = . 19. 解 f(x) g(x) = 1 + logx3 2logx2 = 1 + 2lg 2 + lg 3 4 4 即当 1 v xv -时,f(x) v g(x);当 x-时, 3 3 f(x
8、) g(x). 2 .解 (1)当 xv 时,f(x)= ;当 x 时, f(x) = 2xp. 1 由条件可知 2x 2= 2,即 22x 2 -2x 1 = , 解得 2x= 1 2. 2x , x= log2(1 + 2). (2)当 t 1,2时,2t 22t $ + m 2t 寺寺 , 即 m(2 1) (24t 1). / 22t 1 , m (22t+ 1). t 1,2, (1 + 221) 17 , 5, 故 m 的取值范围是5, + ). lg alg a1= 2(或 lg a 1= loga1 ). 21 .解 (1) 函数 y = f(x)的图象经过 P(3,4), a
9、31 = 4, 即卩 a2= 4. 又 a ,所以 a = 2. (2)由 f(lg a) = 1 知,alg a1= 1 . (lg a 1) lg a = 2. lg2a lg a 2 = , lg a= 1 或 lg a= 2, 1 、 logx:= lgx;x, 4 3 3 当 1 v xv 3 时,4xv 1, .logxv ; 当 x3 时,x 1, l gx;x . 17解原式= -1 64 1 5 2 2 1 1 5 2 3 8 3 4 10 5 X2- 331-1=5 2 3 2 3 2 (2)原式= 浩瀚补课班 必修一第二章唐海亮 4 / 4 a=或 a= 1 . 1 t
10、丄 1 当 a1 时,flg f( 2.1); 1 当 a1 时,f lg 1 1 时,y= ax在(, + )上为增 函数, / 3 3.1 , a3a3.1. 1 即 f 100 f( 2.1); 当 0a 3.1 , a3a3.1, 1 即 f lg 而 X1,则 2 f(X2) f(X1) = (1 ) (1 2 102x2+1 1 2 102x1 + 1) 小 102x2 102x1 =2 102x2+ 1 102x1+ 1 因为 y= 10 x为 R 上的增函数, 所以当 X2X1 时,102x2 102x1 0. 又因为 102X1+ 1 0,102x2+ 1 0. 故当 X2 X1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 羽毛球馆地面加固施工方案范本
- 隧道静态爆破实施施工方案
- ktv墙面装饰材料施工方案
- 施工应急防混合战争方案
- 混凝土结构加固方案
- 市政道路拓宽施工方案及主要技术措施
- 河道清淤作业技术施工方案
- 大型设备吊装作业施工资源配置方案
- 外星生物样本处理实验室施工方案
- 具身智能+企业员工安全行为监测系统方案可行性报告
- 2025个人洗护市场趋势洞察报告-魔镜洞察
- DB4201∕T 662-2022 托幼机构消毒卫生规范
- 2024年湖南省溆浦县事业单位公开招聘工作人员考试题含答案
- 高渗性昏迷疑难病例讨论
- 2025年中远海运重工招聘笔试备考题库(带答案详解)
- Unit 6 Earth First Understanding ideas (教学课件)外研版高中英语必修二
- 纵隔肿瘤围手术期护理
- 肿瘤自杀患者管理制度
- 自来水公司抄收管理制度
- 样本制备区管理制度
- 六宫格数独100题
评论
0/150
提交评论