

下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、i人教版小学六年级数学上册知识点第一单元位置1、 什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。括号 里面的数由左至右为列数和行数,即“先列后行”。作用:确定一个点的位置。经度和纬度就是这个原理。例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列, 第五行)。注:(1)在平面直角坐标系中 X 轴上的坐标表示列,y 轴上的 坐标表示行。如:数对(3,2)表示第三列,第二行。(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不 变,表示一条竖线。(有一个数不确定,不能确定一个点)(列,行)darr; darr;竖排叫列横排叫行(从左往右看)(从下往上看)(从前
2、往后看)ii2、 图形左右平移行数不变;图形上下平移列数不变。3、 两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。第二单元分数乘法(一)分数乘法意义:1、 分数乘整数的意义与整数乘法的意义相同,就是求几个相 同加数的和的简便运算。注:“分数乘整数”指的是第二个因数必须是整数,不能是分 数。例如:times;7 表示:求 7 个 的和是多少?或表示:的 7 倍是多少?2、 一个数乘分数的意义就是求一个数的几分之几是多少。注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)例如:times; 表示:求 的 是多少?9 time
3、s;表示:求 9 的 是多少?A times;表示:求 a 的 是多少?(二)分数乘法计算法则:1 、分数乘整数的运算法则是:分子与整数相乘,分母不变。注:(1)为了计算简便能约分的可先约分再计算。(整数和分母3约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不 能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数
4、先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0 除外),分数的大小不变。(三)积与因数的关系:一个数(0 除外)乘大于 1 的数,积大于这个数。atimes;b=c,当 b gt;1 时,cgt;a.一个数(0 除外)乘小于 1 的数,积小于这个数。atimes;b=c,当 b lt;1 时,c一个数(0 除外)乘等于 1 的数,积等于这个数。atimes;b=c,当 b =1 时,c=a .4注:在进行因数与积的大小比较时,要注意因数为 0 时的特殊情况。附:形
5、如 的分数可折成()times;(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减, 有括号的先算括号里面的,再算括号外面的。2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一 些计算简便。乘法交换律:atimes;b=btimes;a乘法结合律:(atimes;b)times;c=atimes;(btimes;c)乘法分配律:atimes;(bc)=atimes;batimes;c(五)倒数的意义:乘积为 1 的两个数互为倒数。1、 倒数是两个数的关系,它们互相依存,不能单独存在。单 独一个数不能称为倒数。(必须说清谁是谁的倒数)2、 判断两个数是否互为倒数的唯
6、一标准是:两数相乘的积是 否为“ 1”。例如:atimes;b=1 则 a、b 互为倒数。3、 求倒数的方法:1求分数的倒数:交换分子、分母的位置。2求整数的倒数:整数分之 1。3求带分数的倒数:先化成假分数,再求倒数。4求小数的倒数:先化成分数再求倒数。54、 1 的倒数是它本身,因为 1times;1=10 没有倒数,因为任何数乘 0 积都是 0,且 0 不能作分母。5、 任意数 a(ane;0),它的倒数为;非零整数 a 的倒数为;分 数的倒数是。6、 真分数的倒数是假分数,真分数的倒数大于1,也大于它 本身。假分数的倒数小于或等于 1。带分数的倒数小于 1。(六)分数乘法应用题 用分数
7、乘法解决问题1、 求一个数的几分之几是多少?(用乘法)“ 1” times;=例如:求 25 的 是多少?列式:25times; =15甲数的 等于乙数,已知甲数是 25,求乙数是多少?列式:25times; =15注:已知单位“ 1”的量,求单位“ 1”的量的几分之几是多少,用单位“ 1”的量与分数相乘。2、 (什么)是(什么)的。()=(“ 1” ) times;例 1:已知甲数是乙数的,乙数是 25,求甲数是多少?6甲数二二乙数 times;即 25times; =15注:(1) “是”“的”字中间的量“乙数”是 的单位“ 1”的 量,即 是把乙数看作单位“1”,把乙数平均分成 5 份,
8、甲数是其中 的 3 份。(2)“是”“占”“比”这三个字都相当于“二二”号,“的”字相当于“ times; ”。(3)单位“ 1”的量 times;分率二二分率对应的量例 2:甲数比乙数多(少),乙数是 25,求甲数是多少?甲数二二乙数乙数 times;即 2525times;=25times;(1 )=40( 或 10)3、 巧找单位“ 1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的 量是单位“ 1”。4、 什么是速度?速度是单位时间内行驶的路程。速度 二二路程 divide;时间 时间 二二路程 divide;速度 路程二二速度 t
9、imes;时间单位时间指的是 1 小时 1 分钟 1 秒等这样的大小为 1 的时间单 位,每分钟、每小时、每秒钟等。5、 求甲比乙多(少)几分之几?多:(甲-乙)divide;乙少:(乙-甲)divide;乙7第三单元分数除法一、分数除法的意义: 分数除法是分数乘法的逆运算, 已知两 个数的积与其中一个因数,求另一个因数的运算。二、分数除法计算法则:除以一个数(0 除外),等于乘上这个 数的倒数。1、 被除数divide;除数=被除数times;除数的倒数。 例 divide;3= times;= 3divide; =3times; =52、 除法转化成乘法时,被除数一定不能变,“divide
10、; ”变成“times; ”,除数变成它的倒数。3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。4、被除数与商的变化规律:除以大于 1 的数,商小于被除数: adivide;b=c当 bgt;1 时,c除以小于 1 的数,商大于被除数:adivide;b=c当 blt;1时,cgt;a (an e;0 bne;0)除以等于 1 的数,商等于被除数:adivide;b=c当 b=1 时,c=a三、分数除法混合运算1、 混合运算用梯等式计算,等号写在第一个数字的左下角。2、 运算顺序:1连除:属同级运算,按照从左往右的顺序进行计算;或者先8把所有除法转化成乘法再计算;或者依据“除以
11、几个数,等于乘上这 几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二 级运算。2混合运算:没有括号的先乘、除后加、减,有括号的先算括 号里面,再算括号外面。注: (ab)divide;c=adivide;cbdivide;c四、比:两个数相除也叫两个数的比1、比式中,比号(:)前面的数叫前项,比号后面的项叫做后 项,比号相当于除号,比的前项除以后项的商叫做比值。注:连比如:3: 4: 5 读作:3 比 4 比 52、 比表示的是两个数的关系, 可以用分数表示, 写成分数的 形式,读作几比几。例:12: 20= =12divide;20 二二=0.6 12: 20 读作:12 比 2
12、0注:区分比和比值:比值是一个数,通常用分数表示,也可以 是整数、小数。比是一个式子,表示两个数的关系,可以写成比,也可以写成 分数的形式。3、 比的基本性质:比的前项和后项同时乘以或除以相同的数 (0 除外),比值不变。3、 化简比:化简之后结果还是一个比,不是一个数。(1)、用比的前项和后项同时除以它们的最大公约数。(2)、两个分数的比,用前项后项同时乘分母的最小公倍数, 再按化简整数比的方法来化简。也可以求出比值再写成比的形式。9(3)、两个小数的比,向右移动小数点的位置,也是先化成整 数比。4、 求比值:把比号写成除号再计算,结果是一个数(或分数), 相当于商,不是比。5、 比和除法、
13、分数的区别:除法 被除数 除号(divide;) 除数(不能为 0)商不变性质 除 法是一种运算分数 分子 分数线()分母(不能为 0)分数的基本性质 分数是一个数比前项 比号(:)后项(不能为 0)比的基本性质 比表示两 个数的关系附:商不变性质:被除数和除数同时乘或除以相同的数(0 除外),商不变。分数的基本性质: 分子和分母同时乘或除以相同的数 (0 除外) ,分数的大小不变。五、分数除法和比的应用1、 已知单位“ 1”的量用乘法。例:甲是乙的 ,乙是 25,求 甲是多少?即:甲二二乙 times; (15times; =9)2、 未知单位“ 1”的量用除法。例:甲是乙的,甲是 15,求
14、乙是多少?即:甲二二乙 times; (15divide; =25)(建议列方程答)3、 分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲二二乙 times;几分之几(例: 甲是 15 的, 求甲是多少?15times; =9)10乙二二甲 divide;几分之几(例:9 是乙的,求乙是多少?9divide;= 15)几分之几二二甲 divide;乙(例:9 是 15 的几分之几?9divide;15=)( “是”字相当“ divide; ”号,乙是单位“ 1”)(2)甲比乙多(少)几分之几?A 差 divide;乙二二(“比”字后面的量是单位“ 1”的量)(例:9 比 15
15、少几分之几?(15-9)divide;15 二二=)B 多几分之几是:ndash;1 (例:15 比 9 少几分之几?15divide;9= -1= ndash;仁仁)C 少几分之几是:1ndash;(例:9 比 15 少几分之几?1-9divide;15=1 ndash; =1n dash;=)D 甲二二乙差二二乙乙 times;=乙乙 times;=乙(1 )( 例:甲比 15 少,求甲是多少?15ndash;15times; =15times;(1 ndash; )=9( 多是“ +” 少是 “ ndash; ”)E 乙二二甲 divide;(1 )( 例:9 比乙少,求乙是多少?9di
16、vide;(1- )=9 divide; =15)(多是“ +” 少是 “ ndash; ”)(例:15 比乙多,求乙是多少?15divide;(1+ )=15 divide;=9)(多是“ +” 少是 “ ndash; ”)4、按比例分配:把一个量按一定的比分配的方法叫做按比例 分配。例如:已知甲乙的和是 56,甲、乙的比 3 : 5,求甲、乙分别 是多少?11方法一:56divide;(3+5)=7甲:3times;7=21 乙:5times;7=35方法二:甲:56times; =21 乙:56times; =35例如:已知甲是 21,甲、乙的比 3 : 5,求乙是多少?方法一:21di
17、vide;3=7 乙:5times;7=35方法二:甲乙的和 21divide; =56 乙:56times; =35方法二:甲 divide;乙=乙二二甲 divide; =21divide; =355、画线段图:(1)找出单位“ 1”的量,先画出单位“ 1”,标出已知和未知。(2)分析数量关系。(3)找等量关系。(4)列方程。注:两个量的关系画两条线段图,部分和整体的关系画一条线 段图。一、.圆的特征1 、圆是平面内封闭曲线围成的平面图形,.2、 圆的特征:外形美观,易滚动。3、 圆心 0:圆中心的点叫做圆心.圆心一般用字母 0 表示.圆 多次对折之后,折痕的相交于圆的中心即圆心。圆心确定
18、圆的位置。半径 r:连接圆心到圆上任意一点的线段叫做半径。在同一个 圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。直径 d:通过圆心且两端都在圆上的线段叫做直径。在同一个 圆里,12有无数条直径,且所有的直径都相等。直径是圆内最长的线段。同圆或等圆内直径是半径的 2 倍:d=2r 或 r=ddivide;2 二二 d=4、 等圆: 半径相等的圆叫做同心圆, 等圆通过平移可以完全 重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。5、 圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做 对称轴。有一条对称轴的图形:半圆、扇
19、形、等腰梯形、等腰三角形、 角有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字 母C 表示。1 、圆的周长总是直径的三倍多一些。2、 圆周率:圆的周长与直径的比值是一个固定值,叫做圆周 率,用字母 pi;表示。13即:圆周率 pi;=周长 divide;直径 asymp;3.14所以,圆的周长(c)=直径(d)times;圆周率(pi;) 周长公式:c=pi;d, c=2pi;r注:圆周率 pi;
20、是一个无限不循环小数,3.14 是近似值。3、 周长的变化的规律:半径扩大多少倍直径也扩大多少倍, 周长扩大的倍数与半径、直径扩大的倍数相同。如果 r1 : r2 : r3=d1 : d2 : d3=c1 : c2 : c34、半圆周长二二圆周长一半+ 直径二二 times;2pi;r=pi;叶叶 d三、圆的面积 s1 、圆面积公式的推导如图把一个圆沿直径等分成若干份, 剪开拼成长方形,份数越多拼成的图像越接近长方形。圆的半径二二长方形的宽圆的周长的一半二二长方形的长长方形面积二二长 times;宽所以:圆的面积二二长方形的面积二二长 times;宽二二圆的周长 的一半(pi;r)times;
21、 圆的半径(r)S 圆二二 pi;r times; rS 圆 二二 pi;rtimes;r = pi;r22、 几种图形,在面积相等的情况下,圆的周长最短,而长方 形的14周长最长;反之,在周长相等的情况下,圆的面积则最大,而长 方形的面积则最小。周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆 形。3、 圆面积的变化的规律:半径扩大多少倍直径、周长也同时 扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。如果:r1:r2:r3=d1:d2:d3=c1:c2:c3=2:3:4贝卩:S1 : S2:S3=4:9 : 164、 环形面积二二大圆 ndash;小圆=pi;r 大 2
22、- pi;r 小 2=pi;(r大 2 - r 小 2)扇形面积二 pi;r2times; (n表示扇形圆心角的度数)5、 跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加 上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2times;pi;times; 跑道 宽度。注:一个圆的半径增加 a 厘米,周长就增加 2pi;a 厘米 一个圆的直径增加 b 厘米,周长就增加 pi;b 厘米6、 任意一个正方形的内切圆即最大圆的直径是正方形的边长, 它们的面积比是 4 : pi;7、 常用数据pi;=3.14 2pi;=6.28 3pi;=9.42
23、4pi;=12.56 5pi;=15.7第五单元、百分数一、百分数的意义:表示一个数是另一个数的百分之几。15注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。1 、百分数和分数的区别和联系:(1)联系:都可以用来表示两个量的倍比关系。(2)区别:意义不同:百分数只表示倍比关系,不表示具体数 量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体 数量。百分数的分子可以是小数,分数的分子只以是整数。注:百分数在生活中应用广泛,所涉及问题基本和分数问题相 同,分母是 100 的分数并不是百分数,必须把分母写成“ %才是百 分数,
24、所以“分母是 100 的分数就是百分数”这句话是错误的。“ % 的两个 0 要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到 100%出米率、出油率达不到 100% 完成率、增长了百分之几等可以超过 100% 一般出粉率在 70、80% 出油率在 30、40%2、小数、分数、百分数之间的互化(1)百分数化小数:小数点向左移动两位,去掉“ 。(2)小数化百分数:小数点向右移动两位,添上“ %。(3)百分数化分数:先把百分数写成分母是100 的分数,然后再化简成最简分数。(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三 位小数)然后化成百分数。(5)小数
25、化 分数:把小数成分母是 10、100、1000 等的分数 再16化简。(6)分数 化 小数:分子除以分母。二、百分数应用题1、 求常见的百分率 女口:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几2、 求一个数比另一个数多(或少)百分之几,实际生活中,人 们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示 增加、或减少的幅度。求甲比乙多百分之几(甲-乙)divide;乙求乙比甲少百分之几(甲-乙)divide;甲3、 求一个数的百分之几是多少一个数(单位“ 1”)times; 百分率4、 已知一个数的百分之几是多少, 求这个数部分量 divide;
26、 百分率二二一个数(单位“ 1”)5、 折扣 折扣、打折的意义:几折就是十分之几也就是百分 之几十折扣成数几分之几百分之几小数通用八折 八成 十分之八 百分之八十 0.8八五折八成五十分之八点五百分之八十五 0.85五折五成十分之五百分之五十 0.5 半价6、纳税 缴纳的税款叫做应纳税额。17(应纳税额)divide;(总收入)=(税率)(应纳税额)=(总收入)times;(税率)7、利率(1)存入银行的钱叫做本金。(2)取款时银行多支付的钱叫做利息。(3)利息与本金的比值叫做利率。利息二二本金 times;利率 times;时间税后利息二二利息-利息的应纳税额二二利息-利息 times;5%
27、注:国债和教育储蓄的利息不纳税8、百分数应用题型分类(1)求甲是乙的百分之几(甲 divide;乙)times;100% =times;100% = 百分之几(2)求甲比乙多(少)百分之几 times;100% = times;100%例1甲是 50,乙是 40,甲是乙的百分之几?(50 是 40 的百分之几?)50divide;40=125%2甲是 50,乙是 40,乙是甲的百分之几?(40 是 50 的百分之几?)40divide;50=80%183乙是 40,甲是乙的 125%甲数是多少?(40 的 125 僱多少?)40times;125%=504甲是 50,乙是甲的 80% 乙数是多
28、少?(50 的 80 僱多少?)50times;80%=405乙是 40,乙是甲的 80%甲数是多少?(一个数的 80%是 40, 这个数是多少?)40divide;80%=506甲是 50,甲是乙的 125%乙数是多少?(一个数的 125%是50,这个数是多少?)50divide;125%=407甲是 50,乙是 40,甲比乙多百分之几?(50 比 40 多百分之几?)(50-40)divide;40times;100%=25%8甲是 50,乙是 40,乙比甲少百分之几?(40 比 50 少百分之几?)(50-40)divide;50times;100%=20%9甲比乙多 25% 多 10,
29、乙是多少?10divide;25%=4010甲比乙多 25% 多 10,甲是多少?10divide;25%+10=50 #9322;乙比甲少 20% 少 10,甲是多少?10divide;20%=50 #9323; 乙比甲少20% 少 10 ,乙是多少?10divide;20%-10=40 #9324;乙是 40 ,甲比乙多 25%甲数是多少?(什么数比 40 多25%?)40times;(1+25%)=50#9325;甲是 50 ,乙比甲少 20%乙数是多少?(什么数比 50 多25%?)50times;(1-20%)=4019#9326;乙是 40 ,比甲少 20%甲数是多少?(40 比什
30、么数少20%?)40divide;(1-20%)=50#9327;甲是 50 ,比乙多 25%乙数是多少?(50 比什么数多25%?)40divide;(1+25%)=40第六单元、统计1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。2、常用统计图的优点:(1)、条形统计图直观显示每个数量的多少。(2)、折线统计图不仅直观显示数量的增减变化,还可清晰看 出各个数量的多少。(3)、扇形统计图直观显示部分和总量的关系。第七单元、数学广角一、研究中国古代的鸡兔同笼问题。1、用表格方式解决有局限性,数目必须
31、小,例:头数鸡(只)兔(只)腿数35 1 3435 2 3335 3 3220(逐一列表法、腿数少,小幅度跳跃;腿数多,大幅度跳跃。跳跃逐一相结合、取中列表)2、用假设法解决(1)假如都是兔假如都是鸡(3)假如它们各抬起一条腿假如兔子抬起两条前腿3、用代数方法解(一般规律)注释:这个问题,是我国古代著名趣题之一。大约在1500 年前,孙子算经中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这 四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有 35 个头;从下面数,有 94 只脚。求笼中各有几只鸡和兔?二、和尚分馒头100 个和尚吃 100 个馒头,大和尚一人吃 3 个,小和尚三人吃一个。大小和尚各多少人?国明代珠算家程大位的名著直指算法统宗里有一道著名算 题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有 100 个和尚分 100 只馒头,正 好21分完。如果大和尚一人分 3 只,小和尚 3 人分一只,试问大、小和 尚各有几人?方法一,用方程解:解:设大和尚有 x 人,贝卩小和尚有(100-x)人,根据题意列得 方程:3x + (100-x)=100 x=25100-25=75 人方法二,鸡兔同笼法:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 薪酬管理试卷及答案
- 深度研究:远程医疗服务在分级诊疗中的远程医疗与医疗信息化培训服务报告
- 2025年教师招聘之《幼儿教师招聘》练习题包带答案详解ab卷
- 2025年安徽电工证考试试题及答案
- 2025陶瓷地板买卖合同
- 儿童综合娱乐题库及答案
- 教师招聘之《小学教师招聘》能力检测试卷(考点精练)附答案详解
- 基于大数据的2025年智能家居系统集成项目数据分析报告
- 节能改造工程的方案(3篇)
- 2025年教师招聘之《小学教师招聘》练习试题【完整版】附答案详解
- 英语教学发音课件下载
- 2025年特种设备检验人员资格考试(压力管道检验师GDS)历年参考题库含答案详解(5套)
- 2025年河南省公开遴选公务员考试(案例分析与对策性论文)历年参考题库含答案详解(5套)
- 挡土墙、围墙施工方案(技术标)
- 2025年中药三基试题及答案大全
- 白内障囊外摘除联合青光眼人工晶体植入术后护理查房
- 减糖与健康口腔课件
- 新时代学校思想政治工作评价机制研究
- 2025秋统编版(2024)道德与法治二年级上册第四单元《第16课 祖国 我为您自豪》教学设计
- 消防维保质量管理及保证措施
- 2025年上海市(秋季)高考语文真题详解
评论
0/150
提交评论