版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 一、选择题:本题共 12 小题,每小题 5 分,共60 分在每小题给出的四个选项中,只有一项是符合题目要求的 1函数 ycos2x6的最小正周期是 ( ) a.2 b c2 d4 解: 函数 ycos2x6的最小正周期 t22.故选 b. 2(2017天津)设 r,则“1212”是“sin12”的 ( ) a充分而不必要条件 b必要而不充分条件 c充要条件 d既不充分也不必要条件 解:根据条件,由1212得 06,推出 sin12,而当 sin12时,取 6,612412.故选 a. 3(2016江西三校联考)函数 ysin2x 的图象的一个对称中心为 ( ) a(0,0) b. 4,0 c
2、.4,12 d.2,1 解:因为 ysin2x1cos2x2,令 2x2k,kz,所以 x4k2,kz,所以函数 ysin2x 的图象的一个对称中心为4,12.故选 c. 4(2016全国卷) 函 数 f(x) cos2x 6cos2x 的最大值为 ( ) a4 b5 c6 d7 解:因为 f(x)12sin2x6sinx2sinx322112,而 sinx1,1,所以当 sinx1 时,f(x)取最大值 5.故选 b. 5已知函数 f(x)cos2x3cos2x,其中xr,给出下列四个结论: 函数 f(x)是最小正周期为 的奇函数; 函数 f(x)图象的一条对称轴是直线 x23; 函数 f(
3、x)图象的一个对称中心为512,0 ; 函数 f(x)的递增区间为k6,k23,kz. 则正确结论的个数是 ( ) a1 b2 c3 d4 解:f(x) cos2x3cos2xcos2xcos3sin2xsin3cos2xsin2x6, 不是奇函数, 错;f23sin4361, 正确; f512sin0,正确;令 2k22x62k32,kz,得 k6xk23,kz,正确综上知正确结论的个数为 3.故选 c. 6(2018届湖南永州第三次联考)将函数 f(x)sin(2x)|2的图象向左平移6个单位后的图象关于原点对称,则函数 f(x)在0,2上的最小值为 ( ) a.32 b.12 c12 d
4、32 解: 将函数 f(x)sin(2x)|f(3), 要得到函数f(x)的图象, 可将函数 y2cosx3的图象 ( ) a向右平移12个单位长度 b向右平移6个单位长度 c向左平移12个单位长度 d向左平移6个单位长度 解:函数 f(x)2cosx3 的一个对称中心是(2,0),即 f(2)0,所以 2cos23 0,23 2 k(kz) , 6 k(kz) , f(x) 2cosx36k. 因 为f(1)f(3) , 所 以2cos6k 2cos56k , 故不妨取 k0, 6,f(x)2cosx362cos3x12,可将函数 y2cosx3的图象向右平移12个单位长度故选 a. 12若
5、 tan2tan5,则cos310sin5 ( ) a1 b2 c3 d4 解:cos310sin5coscos310sinsin310sincos5cossin5 cos310tansin310tancos5sin5cos3102tan5sin3102tan5cos5sin5 cos5cos3102sin5sin310sin5cos5 cos5cos310sin5sin310cos25sin31012sin25 3cos10cos103.故选 c. 二、填空题:本题共 4 小题,每小题 5 分,共20 分 13已知 sin13, 则 sin(2 019)_. 解:sin(2 019)sin(
6、)sin13.故填13. 14cos43cos77sin43cos167的值为_ 解 : cos43 cos77 sin43 cos167 cos43cos77sin43(sin77)cos12012.故填12. 15(2017北京)在平面直角坐标系 xoy 中,角 与角 均以 ox 为始边,它们的终边关于 y 轴对称若 sin13,则 sin_. 解:如图, 作出单位圆,假设角 与角 终边与单位圆的交点分别为 a, b, 根据 sin13, 得 a 的纵坐标为13., 的终边关于 y 轴对称, 则 b 的纵坐标为13, 所以 sinsin13.故填13. 16在abc 中, 若ab ac7,
7、 |abac|6,则abc 的面积的最大值为_ 解:设角 a,b,c 的对边分别为 a,b,c,则由已知条件可知 bccosa7,a6.由余弦定理可知36b2c214,故 b2c250,2bcb2c250,故 bc25.sabc12bcsina 12bc1cos2a 12bc149(bc)212(bc)249122524912,当 bc5 时等号成立,故所求的最大值为 12.故填 12. 三、解答题:共 70 分解答应写出文字说明、证明过程或演算步骤 17(10 分)(2017江苏)已知向量 a (cosx,sinx),b(3, 3),x0, (1)若 ab,求 x 的值; (2)记 f(x)
8、a b, 求 f(x)的最大值和最小值以及对应的 x 的值 解: (1)因为 a(cosx, sinx), b(3, 3), ab,所以 3cosx3sinx. 若 cosx0, 则 sinx0, 与 sin2xcos2x1 矛盾,故 cosx0.于是 tanx33.又 x0, , 所以 x56. (2)f(x)a b(cosx,sinx) (3, 3) 3cosx 3sinx2 3cosx6. 因为 x0,所以 x66,76, 从而1cosx632. 于是,当 x66,即 x0 时,f(x)取到最大值3; 当 x6,即 x56时,f(x)取到最小值2 3. 18(12 分)(2017天津)在
9、abc 中,内角 a,b,c 所对的边分别为 a,b,c.已知 ab,a5,c6,sinb35. (1)求 b 和 sina 的值; (2)求 sin2a4的值 解:(1)在abc 中,因为 ab,故由 sinb35,可得 cosb45. 由已知及余弦定理,有 b2a2c22accosb13,所以 b 13. 由正弦定理asinabsinb,得 sinaasinbb3 1313. 所以,b 的值为 13,sina 的值为3 1313. (2)由(1)及 ac,得 cosa2 1313,所以 sin2a2sinacosa1213,cos2a12sin2a513. 故 sin2a4sin2acos
10、4cos2asin47 226. 19(12 分)(2018哈师大附中高三三模)已知 a (2sinx , sinx cosx) , b (cosx , 3(sinxcosx),00,所以 b4. 20(12 分)(2017全国卷)abc 的内角 a,b,c 的对边分别为 a,b,c.已知 sina 3cosa0,a2 7,b2. (1)求 c; (2)设 d 为 bc 边上一点, 且 adac, 求abd的面积 解:(1)由已知可得 tana 3,所以 a23. 在abc 中,由余弦定理得 284c24ccos23, 即 c22c240. 解得 c6(舍去),或 c4. (2)由题设可得ca
11、d2, 所以badbaccad6. 故abd 面积与acd 面积的比值为 12abadsin612acad1. 又abc 的面积为1242sinbac2 3, 所以abd 的面积为 3. 21(12 分)已知函数 f(x)的图象是由函数 g(x)cosx 的图象经如下变换得到: 先将 g(x)图象上所有点的纵坐标伸长到原来的 2 倍(横坐标不变), 再将所得到的图象向右平移2个单位长度 (1)求函数 f(x)的解析式, 并求其图象的对称轴方程; (2)已知关于 x 的方程 f(x)g(x)m 在0,2)内有两个不同的解 ,求实数 m 的取值范围 解:(1)将 g(x)cosx 的图象上所有点的
12、纵坐标伸长到原来的 2 倍(横坐标不变)得到 y2cosx 的图象, 再将 y2cosx 的图象向右平移2个单位长度后得到 y2cosx2 的图象,故 f(x)2sinx,从而函数f(x)2sinx 图象的对称轴方程为 xk2(kz) (2)f(x)g(x)2sinxcosx525sinx15cosx5sin(x)(其中 sin15,cos25) 依题意,sin(x)m5在区间0,2)内有两个不同的解 ,当且仅当m51,故 m 的取值范围是( 5, 5) 22(12 分)设 f(x)sinxcosxcos2x4. (1)求 f(x)的单调区间; (2)在锐角abc 中,角 a,b,c 的对边分别为a,b,c.若 fa20,a1,求abc 面积的最大值 解:(1)由题意知 f(x)sin2x21cos2x22 sin2x21sin2x2sin2x12. 由22k2x22k,kz, 可得4kx4k,kz; 由22k2x322k,kz, 可得4kx34k,kz. 所 以 函 数f(x) 的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 萍乡市人民医院医疗技术规范考核
- 基础工程之浅基础教案(2025-2026学年)
- 幼儿园科学游戏的设计与指导教案(2025-2026学年)
- 富氧燃烧技术教案(2025-2026学年)
- 电商模式教案(2025-2026学年)
- 高中语文林教头风雪山神庙陆虞侯火烧草料场鲁教版选修中国古代小说选读教案(2025-2026学年)
- 交变电流的产生变化规律教案(2025-2026学年)
- 高中数学不等式不等关系不等式不等式性质的应用新人教A版必修教案(2025-2026学年)
- 八年级数学下册一次函数教案新版新人教版(2025-2026学年)
- 海南省万宁市思源实验学校八年级数学上册第十五章第三节整式的除法新人教版教案(2025-2026学年)
- 胸腹水常规解读
- 《生成式人工智能》 课件 第4章 Transformer模型
- (新交际英语2024版)英语二年级上册Unit 2课件
- 双镜联合治疗肾结石讲课件
- 肿瘤病人疼痛管理
- VDA5测量系统分析培训
- vivo内部管理制度
- 2025+CSCO肿瘤治疗所致血小板减少症(CTIT)诊疗指南解读
- 【企业绩效考核研究的国内外文献综述4000字】
- 集资建房合同协议
- 物业合同外包协议
评论
0/150
提交评论