




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、淘宝店铺:漫兮教育 概率与统计复习课英山雷店高中 通过对概率的复习让学生进一步认识到概率是研究和揭示统计规律的数学工具,对决策的制定有重要的作用。是我们认识世界、征服世界的工具。同时让学生深刻体会概率中必然与偶然对立统一的辩证思想。已成为近几年高考的一大亮点和热点它与其他知识融合、渗透,情境新颖。与湖北卷相比,全国卷重视数据处理能力得到了很好地体现。 一2016年考试大纲全国卷1与湖北卷相比较:知识内容全国卷(1)要求概率与统计统计随机抽样简单随机抽样理解分层抽样和系统抽样了解用样本估计总体频率分布表、直方图、频率折线图、茎叶图理解样本数据的基本数字特征(众数、中位数、平均数、方差、标准差)及
2、其意义理解用样本的频率分布估计总体分布,用样本的基本数字特征估计总体的基本数字特征理解变量的相关性相关关系和散点图理解最小二乘法了解线性回归方程理解概率事件与概率随机事件的关系与运算了解随机事件的概率了解两个互斥事件的概率加法公式了解古典概型古典概型理解计算一些随机事件所含的基本事件数及事件发生的概率(理科)理解用列举法计算一些随机事件所含的基本事件数及事件发生的概率(文科)了解随机数与几几何概型随机数了解几何概型了解概率与统计(仅限理科)概率与统计(仅限理科)取有限个值的离散型随机变量及其分布列理解超几何分布了解条件概率了解事件的独立性了解n次独立重复试验模型及二项分布理解取有限个值的离散型
3、随机变量均值、方差理解正态分布了解回归思想了解独立性检验了解对比前几年的的考试大纲,全国卷1变化非常小二近四年全国卷1中本专题的考试特点与命题规律:全国理难易程度全国文难易程度2016年选择题4:考查几何概型易选择题3:考查古典概型及概率计算公式(列举法)易解答题19:考查直方图,数字特征和分布列;难解答题19:考查频率分布直方图;难2015年选择题4:考查独立重复试验;互斥事件和概率公式易选择题4:考查古典概型(列举法)易解答题19:考查非线性拟合;线性回归方程求法;利用回归方程进行预报预测;难解答题19:考查非线性拟合;线性回归方程求法;利用回归方程进行预报预测;难2014年选择题5:考查
4、古典概型,互斥事件,对立事件中等填空题13:考查古典概型(列举法)容易解答题18:考查直方图,数字特征和正态分布中等解答题18:考查直方图,数字特征,较易2013年选择题3:考查抽样方法容易选择题3:考查古典概型(列举法)容易解答题19:考查条件概率,相互独立事件,互斥事件难度较大解答题18:考查茎叶图,用样本的基本数字特征估计总体的基本数字特征较易(1)题型与分值均不变 从近四年全国卷1看:无论文理题型都稳定为一大一小两道题,分值17分,占比约11%。 (2)考查内容不变 这四年中仅有2013年的理数卷是小题考查统计(抽样方法),大题考查概率(条件概率)。其余五卷均与之相反,都是小题考查概率
5、,大题考查统计知识。 (3) 密切联系教材,重视对基础知识和基本技能考查 试题通常是通过对常见题型进行改编,通过对基础知识的整合、变式和拓展,从而加工为立意高、情境新、设问巧的实际问题(4)重点考察本单元知识在实际生活中的应用 文科小题一般主要考查古典概型,难度较小。解答题以对统计的考查为主,几乎所有的统计考点都有所涉及,应用性和开放性都越来越强,对学生的能力要求越来越高。 (5)试题的文字、数据和图形的信息量大 由此预计这些特点2017年依然会延续下去。三专题知识体系构建的方法与总体构思(复习计划)1. 指导思想以基础知识为明线,数学思想作暗线,突出主线(解题方法,思维能力)2课时安排本单元
6、包括6讲和1个120分钟标准单元能力检测卷,每讲连课时训练一起2课时,试卷2课时,共需14课时完成3.单元知识体系四重点知识强化策略包括常见题型和解题方法,难点突破策略。教学重点1.基本概念和基本公式。如等可能性事件的概率、互斥事件的概率、对立事件的概率、相互独立事件的概率、独立重复试验。2.常见题型的解题方法。如抽样方法,频率分布表和频率分布直方图,离散型随机变量分布列和数学期望、方差。3.知识的应用。如预测问题,决策问题等。难点突破1. 事件之间的关系即确定概率类型2. 阅读图表,处理数据,运算求解3. 将实际问题转化为数学问题即建模4. 理解概率的或然与必然的思想本质教法学法分析采用“引
7、导”“点拔”等教学方法,学生通过独立思考、自主解题、合作交流等学习方式,熟练知识,发展能力。常见题型概率一盒中装有大小和质地均相同的12个小球,其中5个红球,4个黑球,2个白球,1个绿球,从中随机取出1球,求:(1)取出的小球是红球或黑球的概率;(2)取出的小球是红球或黑球或白球的概率(1)当所求事件情况较复杂时,一般要分类计算,这就要用到互斥事件的概率加法公式或考虑其对立事件(2)当所求事件中含有“至少”“至多”或分类情况较多时,可考虑其对立事件如图,从a1(1,0,0),a2(2,0,0),b1(0,1,0),b2(0,2,0),c1(0,0,1),c2(0,0,2)这6个点中随机选取3个
8、点(1)求这3点与原点o恰好是正三棱锥的四个顶点的概率;(2)求这3点与原点o共面的概率 解析:从这6个点中随机选取3个点的所有可能结果是:x轴上取2个点,有a1a2b1,a1a2b2,a1a2c1,a1a2c2,共4种;y轴上取2个点,有b1b2a1,b1b2a2,b1b2c1,b1b2c2,共4种;z轴上取2个点,有c1c2a1,c1c2a2,c1c2b1,c1c2b2,共4种;所选取的3个点在不同坐标轴上,有a1b1c1,a1b1c2,a1b2c1,a1b2c2,a2b1c1,a2b1c2,a2b2c1,a2b2c2,共8种(1)有关古典概型的概率问题,关键是求出基本事件总数和事件a包含
9、的基本事件数(2)在用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助于“树状图”列举例1:如图,在圆心角为直角的扇形oab中,分别以oa,ob为直径作两个半圆在扇形oab内随机取一点,则此点取自阴影部分的概率是()例2:小明和小雪约了星期天下午在月牙塘公园见面,由于龙泉路最近在修路,可能会堵车小明说他大概4:005:00会到,小雪说这次她大概5:006:00就会到了,这次他们约定先到的等半个小时另一个还没来就可以先走,假设他们在自己估计时间内到达的可能性相等,问他们两个能相遇的概率有多大?分析:如果在一维坐标轴中表示他们相遇的可能性则种类太多,表达不清,又因为小明到达的时间在4点
10、至5点间,小雪到达的时间在5点到6点间,属于两个变量的情形,所以我们采用二维的坐标系来构建这个题的数学模型。设小明到达的时间为x,小雪到达时间为y,那么 约定先到的等半个小时另一个还没来就可以先走则他们两个要相遇需要满足解:设小明到达的时间为x,小雪到达时间为y,小明和小雪相遇为事件a则试验的全部结果所构成的区域为事件a构成的区域为由图可知,则所以小明和小雪相遇的概率为1/8(1)当试验的结果构成的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解;(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几
11、何概型中约会问题利用二位坐标系来解决,是高考中的常考题型,不可忽视。常见题型概率某校共有学生2 000名,各年级男、女生人数如下表所示已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()(1)解决此类题目首先要深刻理解各种抽样方法的特点和适用范围,如分层抽样,适用于数目较多且各部分之间具有明显差异的总体(2)系统抽样中编号的抽取和分层抽样中各层人数的确定是高考重点考查的内容某地区为了解7080岁老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查,下表是这50位老人日睡眠时间的频率分布表 在上述统计数据
12、的分析中,一部分计算见算法流程图,则输出的s的值是_(1)解决该类问题时应正确理解图表中各个量的意义,从图表中掌握信息是解决该类问题的关键(2)本题中s实际上是样本的近似平均数我们可以根据频率分布表或频率分布直方图来大致求出样本的平均数,具体做法是,用频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和突破点3 众数、中位数、平均数、方差、标准差随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图所示(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为
13、176 cm的同学被抽中的概率解析:(1)由茎叶图可知:甲班身高集中于160179 cm之间,而乙班身高集中于170180 cm之间因此乙班平均身高高于甲班(2)x(158162163168168170171179179182)÷10170.(1)本题考查了茎叶图的识图问题和平均数的计算,其中从茎叶图中读出数据是关键,为此,首先要弄清“茎”和“叶”分别代表什么(2)要熟练掌握众数、中位数、平均数、方差、标准差的计算方法(2014·新课标卷)某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程
14、,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入。(1)正确作出散点图,由散点图可知两个变量是否具有线性相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值(2)正确记忆求b,a的公式和准确地计算,是解题的保证五训练试题的选择及其意图。概率与统计六大易混易错点:1、混淆“相互独立事件的概率”与“互斥事件的概率”而致误2、混淆“条件概率”与“相互独立事件的概率”而致误3、混淆“二项分布”与“超几何分布”而致误4、忽视正态分布的图像而致误5、线性回归方程的性质不熟练而致误6、不理解独立性检验的思想而致误针对这些易错点,
15、结合学生实际(任教班级的学情),可以设置一些小题组,进行实战演练、强化训练,从而提高教学的针对性和有效性。类型一 “非等可能”与“等可能”混同例1 掷两枚骰子,求所得的点数之和为6的概率错解 掷两枚骰子出现的点数之和2,3,4,12共11种基本事件,所以概率为p=剖析 以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种事实上,掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的概率为p=类型二 “互斥”与“对立”混同例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1
16、张,事件“甲分得红牌”与“乙分得红牌”是( ) a对立事件 b不可能事件 c互斥但不对立事件 d以上均不对错解 a剖析 本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在 : (1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生 事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选c类型三 “互斥”与“独立”混同例3 甲投篮命中
17、率为o8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?错解 设“甲恰好投中两次”为事件a,“乙恰好投中两次”为事件b,则两人都恰好投中两次为事件a+b,p(a+b)=p(a)+p(b): 剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和互斥事件是指两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关系是根本不同解: 设“甲恰好投中两次”为事件a,“乙恰好投中两次”为事件b,且a,b相互独立,则两人都恰好投
18、中两次为事件a·b,于是p(a·b)=p(a)×p(b)= 0.169类型四 “条件概率p(b / a)”与“积事件的概率p(a·b)”混同例4 袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率错解 记“第一次取到白球”为事件a,“第二次取到黄球”为事件b,”第二次才取到黄球”为事件c,所以p(c)=p(b/a)=.剖析 本题错误在于p(ab)与p(b/a)的含义没有弄清, p(ab)表示在样本空间s中,a与b同时发生的概率;而p(b/a)表示在缩减的样本空间sa中,作为条件的a已经发生的条件下事件b发生的概率。解: p(c)= p(ab)=p(a)p(b/a)=.六、课堂小结:随着新课改的深入,高考将越来越重视这部分的内容,概率、统计都将是重点考查内容,至少会考查其中的一种类型在复习备考中,注意掌握概率与统计的基本概念,对于一些容易混淆的概念,应注意弄清它们之间的联系与区别;掌握几种典型概型、分布列及计算公式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北省沧州市盐山中学2025-2026学年九年级上学期第一次月考物理试题(含解析)
- 湖北省谷城县2026届九上化学期中经典试题含解析
- 浙江省仙居县2026届九上化学期中学业水平测试模拟试题含解析
- 2026届河南省周口沈丘县联考英语九年级第一学期期末调研试题含解析
- 2026届安徽省滁州地区化学九上期末检测试题含解析
- 2026届广东省湛江市名校九年级英语第一学期期末质量跟踪监视试题含解析
- 离婚后子女抚养权争议调解及教育支持服务合同
- 夫妻离婚前财产分割与债权债务协议范本
- 专科英语考试题及答案
- 生态修复工程树木种植与生态监测承包合同
- GB/T 21063.4-2007政务信息资源目录体系第4部分:政务信息资源分类
- 机修车间岗位廉洁风险点及防范措施表
- 全新版尹定邦设计学概论1课件
- 牙及牙槽外科
- 文物建筑保护修缮专项方案
- 万用表 钳形表 摇表的使用课件
- 63T折弯机使用说明书
- 170位真实有效投资人邮箱
- 工程力学ppt课件(完整版)
- 《区域经济学》讲义(1)课件
- 船模制作教程(课堂PPT)课件(PPT 85页)
评论
0/150
提交评论