

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、河北省邯郸市大河道乡中学2022年高三数学文联考试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 抛物线y=4ax2(a0)的焦点坐标是( )a(0,a)b(a,0)c(0,)d(,0)参考答案:c考点:抛物线的简单性质 专题:圆锥曲线的定义、性质与方程分析:先将抛物线的方程化为标准式,再求出抛物线的焦点坐标解答:解:由题意知,y=4ax2(a0),则x2=,所以抛物线y=4ax2(a0)的焦点坐标是(0,),故选:c点评:本题考查抛物线的标准方程、焦点坐标,属于基础题2. 已
2、知集合, ,则=( )a. b. c. d. (1,1 参考答案:b3. 如图,已知r是实数集,集合,则阴影部分表示的集合是(
3、 ).a. b. c. d.参考答案:d略4. 将函数的图象向左平移个长度单位后,所得到的函数为偶函数,则m的最小值是( )ab. cd参考答案:a略5. 复数z=i(i+1)(i为虚数单位)的共轭复数是a.-1-i b.-1+i c.1-i d.1+i参考答案:由z=i(i+1)=,及共轭复数定义
4、得.【点评】本题考查复数代数形式的四则运算及复数的基本概念,考查基本运算能力.先把z化成标准的形式,然后由共轭复数定义得出.6. (5分)若关于x的不等式的解集为x|0x2,则实数m的值为() a 1 b 2 c 3 d 3参考答案:a【考点】: 一元二次不等式的应用【专题】: 计算题【分析】: 由一元二次方程与对应不等式关系可知,一元二次不等式解集边界值,就是所对应一元二次方程两根,然后将根代入方程即可求出m的值解:不等式的解集为x|0x2,0、2是方程x2+(2m)x=0的两个根,将2代入方程得m=1m=1;故答案为:1【点评】: 本题考查一元二次不等式与所对应的二次方程关系,同时转化能力
5、,属于基础题7. 设函数f(x)=(其中ar)的值域为s,若1,+)?s,则a的取值范围是a(,)b1,(,2c(,)1,2d(,+)参考答案:c【考点】函数的值域 【专题】综合题;分类讨论;函数思想;集合思想;数学模型法;函数的性质及应用【分析】对a=0,a,a0分类求出分段函数的值域s,结合1,+)?s,由两集合端点值间的关系列不等式求得a的取值范围【解答】解:a=0,函数f(x)=,函数的值域为s=(0,+),满足1,+)?s,a0,当x0时,f(x)=asinx+22a,2+a;当x0时,f(x)=x2+2a(2a,+)若0,f(x)的值域为(2a,+),由1,+)?s,得2a1,0;
6、若,即,f(x)的值域为2a,+),由1, +)?s,得2a1,1a2;若2+a2a,即a2,f(x)的值域为2a,2+a(2a,+),由1,+)?s,得2a1,a?;a0,当x0,f(x)=x2+2a2a,此时一定有1,+)?s综上,满足1,+)?s的a的取值范围是(,)1,2故选:c【点评】本题考查函数的值域及其求法,体现了分类讨论的数学思想方法,考查了集合间的关系,是中档题8. 如图所示为函数f(x)=2sin(x+)(0,|)的部分图象,其中a,b两点之间的距离为5,则函数g(x)=2cos(x+)图象的对称轴为()ax=12k8(kz)bx=6k2(kz)cx=6k4(kz)dx=1
7、2k2(kz)参考答案:b【考点】正弦函数的对称性【分析】由函数的图象的顶点坐标求出a,由周期求出,由特殊法的坐标作图求出的值,可得g(x)的解析式,再利用余弦函数的图象的对称性,求得函数g(x)=2cos(x+)图象的对称轴【解答】解:根据函数f(x)=2sin(x+)(0,|)的部分图象,可得a=2,且2sin=1,sin=,=再根据ab2=25=42+,=,f(x)=2sin(x+),故函数g(x)=2cos(x+)=2cos(x+)令x+=k,kz,求得x=6k2,故选:b9. 对于,给出下列四个不等式( )
8、160; 其中成立的是 a与 b与 c与 d与参考答案:d
9、0; 10. a,b,c,d四个物体沿同一方向同时开始运动,假设其经过的路程和时间的函数关系分别是,如果运动的时间足够长,则运动在最前面的物体一定是( )。 a、a b、b c、c d、d参考答案:d二、 填空题:本大题共7小题,每小题4分,共28分11. 在锐角abc中,d
10、是线段bc的中点,若,则角b=_,ac=_参考答案: 45° 【分析】利用正弦定理求得,进而求得的大小,利用余弦定理求得.【详解】在三角形中,由正弦定理得,解得,由于三角形为锐角三角形,故.而,在三角形中,由余弦定理得.故答案为: ; .【点睛】本小题主要考查利用正弦定理、余弦定理解三角形,考查运算求解能力,属于基础题.12. 设abc的内角a,b,c的对边分别为a,b,c,且a=1,b=2,则sinb=_ 参考答案:13. 4支足球队两两比赛,一定有胜负,每队赢的概率都为0.5,并且每队赢的场数各不相同,则共有 &
11、#160; 种结果;其概率为 参考答案:24,14. 设(1,2),(a,1),(b,0),a>0,b>0,o为坐标原点, 若a、b、c三点共线,则的最小值是_参考答案:8据已知,又(a1,1),(b1,2),2(a1)(b1)0,2ab1,4428,当且仅当,a,b时取等号,的最小值是8.15. 如图,在直角梯形中,,,.点是直角梯形内任意一点.若,则点所
12、在区域的面积是 .参考答案: 16. 函数在上的单调递增区间为 参考答案:17. 设函数f(x)=2x2+4x在区间m,n上的值域是6,2,则m+n的取值的范围是参考答案:0,4【考点】3w:二次函数的性质【分析】分别求出f(x)=6和f(x)=2的解,根据f(x)的单调性得出m+n的最值【解答】解:令f(x)=6解得x=1或x=3,令f(x)=2得x=1又f(x)在1
13、,1上单调递增,在1,3上单调递减,当m=1,n=1时,m+n取得最小值0,当m=1,n=3时,m+n取得最大值4故答案为0,4三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. (本小题满分10分)关于的不等式的整数解有且仅有一个值为 (为整数) .()求整数的值;()已知,若, 求的最大值.参考答案:见解析【知识点】柯西不等式绝对值不等式【试题解析】(1)由有,关于的不等式的整数解有且仅有一个值为,则,即,又为整数,则(2)由有,由柯西不等式有当且仅当时,等号成立,所以的最大值为19. 已知函数(1)若,求函数的值域;(2)设的三个内角所对的边分别为,若为
14、锐角且,求的值.参考答案:【测量目标】(1)运算能力/能通过运算,对问题进行推理和探求.(2)运算能力/能够根据条件,寻找与设计合理、简捷的运算途径.【知识内容】(1)函数与分析/三角函数/函数的图像和性质;函数与分析/三角比/两角和与差的正弦、余弦、正切.(2)函数与分析/三角比/正弦定理和余弦定理;函数与分析/三角比/两角和与差的正弦、余弦、正切.【参考答案】(1). 2分由得,. 4分,所以函数的值域为6分(2)由得,. 又由得,只有,故.8分 &
15、#160; 在中,由余弦定理得,, 故 10分 由正弦定理得,所以.由于,所以 12分 14分20. 已知a,b,c分别为abc内角a,b,c的对边,。(1)求b;(2)若c6,a2,6,求sinc的取值范围.参考答案:21. 已知等差数列an的前n项和为sn,若,(,且)(1)求数列an的通项;(2)求数列的前n项和参考答案:解:(1)由已知得,且,设数列的公差为,则由,由,得,即,故(2);下面先求的前项和,;两式相减得,()故的前项和为 22. (本小题满分12分)如图,在四棱锥中,平面平面,是线段上一点,(1)证明:平面;(2)设三棱锥与四棱锥的体积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华山医院职业暴露培训
- 知识产权行政保护课件
- 陈鹤琴活教育读书分享
- 冲刺抢分卷01 备战2025年高考考前仿真模拟卷冲刺抢分卷化学试题01 (辽宁、黑龙江、吉林、内蒙古专用) 含解析
- 能发音的音标教学课件
- 农村农田水利工程承包合同
- 食品营养与加工技术案例分析题集
- 社交媒体营销策略考试题
- 行政管理2025年公共关系学的关键问题
- 生物化学在医药领域的知识练习题
- 2025年山西万家寨水务控股集团限公司公开招聘工作人员48人自考难、易点模拟试卷(共500题附带答案详解)
- 广东东软学院《英语语法I》2023-2024学年第二学期期末试卷
- 流行性感冒诊疗方案(2025 年版)解读课件
- 2025年公务员考试时事政治题及参考答案
- 物业管理安全责任分配
- 2025年湖南湘投控股集团有限公司招聘笔试参考题库含答案解析
- 绿色建筑材料在土木工程施工中的应用研究
- 第二十九节 商业模式创新及案例分析
- 中国铁路沈阳局集团有限公司招聘笔试冲刺题2025
- 2024年度医疗设备报废回收与资源化利用合同3篇
- 医疗器械的维护和保养方法
评论
0/150
提交评论