高二数学分类计数原理与分步计数原理教案_第1页
高二数学分类计数原理与分步计数原理教案_第2页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、. .jz*高二数学分类计数原理与分步计数原理教案教学目标:掌握分类计数原理与分步计数原理,并能用这两个原理分析和解决一些简单问题教具准备: 投影胶片两个原理教学过程:设置情境先看下面的问题:2002年夏季在韩国与日本举行的第17 届世界杯足球赛共有32 个队参赛它们先分成8 个小组进展循环赛,决出16 强,这 16 个队按确定的程序进展淘汰赛后,最后决出冠亚军,此外还决出了第三、第四名问一共安排了多少场比赛?要答复上述问题,就要用到排列、组合的知识排列、组合是一个重要的数学方法,粗略地说,排列、组合方法就是研究按某一规那么做某事时,一共有多少种不同的做法在运用排列、组合方法时,经常要用到分类

2、计数原理与分步计数原理,下面我们举一些例子来说明这两个原理探索研究引导学生看下面的问题出示投影从甲地到乙地,可以乘火车,也可以乘汽车,一天中,火车有3 班,汽车有2 班那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?因为一天中乘火车有3 种走法,乘汽车有2 种走法,每一种走法都可以从甲地到乙地,所以共有325 种不同的走法,如下图一般地,有如下原理:出示投影类方法中有种不同分类计数原理完成一件事,有类方法,在第1的方法,在第2 类方法中有种不同的方法,在第类方法中有种不同的方法,那么完成这件事共有:种不同的方法再看下面的问题出示投影从甲地到乙地, 要从甲地选乘火车到丙地,再于次日

3、从丙地乘汽车到乙地一天中, 火车有 3 班,汽车有 2 班那么两天中,从甲地到乙地共有多少种不同的走法如图?. .jz*这个问题与前一个问题不同在前一个问题中,采用乘火车或汽车中的任何一种方式,都可以从甲地到乙地;而在这个问题中,必须经过先乘火车、后乘汽车两个步骤,才能从甲地到乙地这里,因为乘火车有3 种走法,乘汽车有2种走法,所以乘一次火车再接乘一次汽车从甲地到乙地,共有3 26 种不同的走法让学生具体列出6 种不同的走法于是得到如下原理:出示投影分步计数原理完成一件事, 需要分成个步骤,做第 1 步有种不同的方法, 做第 2 步有种不同的方法, ,做第种不同的方法教师提出问题:分类计数原理

4、与分步计数原理有什么不同?学生答复后,教师出示投影:分类计数原理与分步计数原理都是涉及完成一件事的不同方法的种数的问题,它们的区别在于:分类计数原理与“分类有关,各种方法相互独立,用其中任何一种方法都可以完成这件事;分步计数原理与“分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成出示投影例 1 书架的第 1 层放有 4 本不同的计算机书,第2层放有 3 本不同的文艺书,第3层放有 2 本不同的体育书1从书架上任取1 本书,有多少种不同的取法?2从书架的第1、2、3 层各取 1本书,有多少种不同的取法?解答略教师点评:注意区别“分类与“分步例 2 一种锁有 4 个拨号盘,每个拨号

5、盘上有从0 到 9 共 10 个数字,这4 个拨号盘可以组成多少个四位数字的?解答略例 3 要从甲、乙、丙3 名工人中选出2 名分别上日班和晚班,有多少种不同的选法?解答略演练反应1有不同的中文书9 本,不同的英文书7 本,不同的日文书5 本从其中取出不是同一国文字的书2本,问有多少种不同的取法?由一名学生板演后,教师讲评2集合,从、中各取 1个元素作为点的坐标. .jz*1可以得到多少个不同的点?2这些点中,位于第一象限的有几个?由一名学生板演后,教师讲评3某中学的一幢5层教学楼共有3处楼梯,问从1楼到 5 楼共有多少种不同的走法?4某艺术组有9 人,每人至少会钢琴和小号中的一种乐器,其中7

6、 人会钢琴, 3 人会小号,从中选出会钢琴与会小号的各 1 人,有多少种不同的选法?参考答案1解:取出不是同一国文字的书2本,可以分为三类:中英、中日、英日,而每一类中又都可分两步来取,因此有种不同的取法注意:有些较复杂的问题往往不是单纯的“分类“分步可以解决的,而要将“分类“分步结合起来运用一般是先“分类,然后再在每一类中“分步,综合应用分类计数原理和分步计数原理2解: 1一个点的坐标有、两个元素决定,它们中有一个不同那么表示不同的点可以分为两类:中的元素为,中的元素为或中的元素为,中的元素为,共得到3 4 4 3 24 个不同的点2第一象限内的点,即、均为正数,所以只能取、中的正数,共有2

7、 2 2 2 8 个不同的点3解:由于1、2、3、4 层每一层到上一层都有3处楼梯,根据分步计数原理4解:由题意可知,在艺术组9 人中,有且仅有一人既会钢琴又会小号把该人称为“多面手,只会钢琴的有6人,只会小号的有2 人,把会钢琴、小号各1人的选法分为两类:第一类:多面手入选,另一人只需从其他8 人中任选一个,故这类选法共有8 种第二类:多面手不入选,那么会钢琴者只能从6 个只会钢琴的人中选出,会小号的1 人也只能从只会小号的2 人中选出,放这类选法共有6 212 种,因此有种故共有 20种不同的选法注意:像此题中的“多面手可称为特殊“对象,此题解法中按特殊“对象进展“两分法分类是常用的方法总

8、结提炼. .jz*分类计数原理与分步计数原理表达了解决问题时将其分解的两种常用方法,即分步解决或分类解决,它不仅是推导排列数与组合数计算公式的依据,而且其根本思想贯穿于解决本章应用问题的始终要注意“类间互相独立,“步间互相联系布置作业: 课本 p87 习题 10.1 2,3, 4,5 板书设计:10.1 分类计数原理与分步计数原理一图101 图 102 两个原理二例题分析例 1 例 2 例 3 三练习四小结典型例题例 1 在所有的两位数中,个位数字比十位数字大的两位数有多少个?分析与解:分析个位数字,可分以下几类个位是 9,那么十位可以是1,2, 3,8 中的一个,故有8 个;个位是 8,那么

9、十位可以是1,2, 3,7 中的一个,故有7 个;与上同样:个位是 7的有 6 个;个位是 6的有 5 个;个位是 2的只有 1 个由分类计数原理知,满足条件的两位数有个说明:此题是用分类计数原理解答的,结合此题可加深对“做一件事,完成之可以有n类方法的理解, 所谓“做一件事,完成它可以有n类方法,这里是指对完成这件事情的所有方法的一个分类分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进展分类;其次分类时要注意满足一个根本要求:完成这件事的任何一种方法必须属于某一类,并且分别属于不同两类的两种方法是不同的方法,只有满足这些条件,才可以用分类计数原理例 2 在由电键组a

10、 与 b 所组成的并联电路中,如图,要接通电源,使电灯发光的方法有多少种?解:因为只要合上图中的任一电键,电灯即发光,由于在电键组 a 中有 2 个电键,电键组 b 中有 3 个电键,应用分类计数原理,所以共有:2+3=5 种接通电源使灯发亮的方法。. .jz*例 3 二年级一班有学生56 人,其中男生38 人,从中选取一名男生和一名女生作代表,参加学校组织的调查团,问选取代表的方法有几种分析与解:男生38人,女生18 人,由分步计数原理共有种答:选取代表的方法有684种说明:此题是用分步计数原理解答的,结合此题可以加深对“做一件事,完成之需要分成n个步骤的理解,所谓“做一件事,完成它需要分成

11、n个步骤,分析时,首先要根据问题的特点,确定一个分步的可行标准;其次,分步时还要注意满足完成这件事情必须并且只需连续完成这对个步骤后, 这件事情才算圆满完成,这时, 才能使用来法原理例 4 在电键组 a、b 组成的串联电路中,如图,要接通电源使灯发光的方法有几种?解:只要在合上a 组中两个电键之后,再合上b 组中 3 个电键中的任意一个,才能使电灯的电源接通,电灯才能发光,根据分步计数原理共有:2 3=6种不同的方法接通电源,使电灯发光。例 5 有 10 本不同的数学书,9 本不同的语文书,8 本不同的英语书,从中任取两本不同类的书,有多少种不同取法?分析:任取两本不同类的书,有三类:一、取数

12、学、语文各一本;二、取语文、英语各一本;三、取数学、英语各一本然后求出每类取法,利用分类计数原理即可得解解:取出两本书中,一本数学一本语文有种不同取法,一本语文一本英语有种不同取法,一本数学,一本英语有种不同取法由分类计数原理知:共有种不同取法说明:本例是一个综合应用分步计数原理和分类计数原理的题目,在处理这类问题时,一定要搞清哪里是分类,哪里是分步,以确定利用加法或分步计数原理例 61993年全国高考题同室4 人各写 1x 贺年卡,先集中起来,然后每人从中各拿1x 别人送出的贺年卡,那么 4x 贺年卡不同的分配方式有a6 种b9 种c11 种d 23 种分析:此题完成的具体事情是四个人,每人

13、抽取一x 贺卡,问题是按照一定要求,抽取结果有多少种不同情况我们可以把抽卡片的过程分成四步,先是第一人抽,然后第二人,以此类推,但存在的问题是,我们把四个人记为、,他们的卡片依次记为、,如果第一步抽取,接着可抽、,有三种方法,而抽或,仅有两种抽法,这样两步之间产生影响,这样必须就抽的结果进展分类解法 1:设四人a,b, c,d 写的贺年卡分别是a,b,c,d,当 a 拿贺年卡b,那么 b 可拿a,c,d中的任何一个,即 b 拿a,c 拿d,d 拿c或 b 拿c,d 拿a,c 拿d或 b 拿d,c 拿a,d 拿c,所以 a 拿b时有三种不同分配方法同理, a 拿c,d时也各有三种不同的分配方式由

14、分类计数原理,四x 贺年卡共有333=9 种分配方式解法 2:让四人a,b, c,d 依次拿一x 别人送出的贺年卡如果a 先拿有 3 种,此时写被a 拿走的那x 贺年卡的人也有3种不同的取法接下来,剩下的两个人都各只有一种取法由分步计数原理,四x 贺年卡不同的分配方式有种. .jz* 应选 b注意: 1此题从不同的角度去思考,从而得到不同的解答方法,解法1 是用分类计数原理解答的,解法2 是用分步计数原理解答的在此有必要再进一步对两个原理加以理解:如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件

15、事才告完成,那么计算完成这件事的方法数时,使用分步计数原理2分类计数原理、 来法原理是推导排列数、组合数公式的理论根底,也是求解排列、 组合问题的根本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用3如果把四个人依次抽取的结果用一个图表表达出来,就显得更加清楚共有 9 种不同结果这个图表我们称之为“树形图,在解决此类问题往往很有效,通过它可以把各种不同结果直观地表现出来习题精选一、选择题1将 5封信投入3 个邮筒,不同的投法共有a种b种c种d种2将 4个不同的小球放入3 个不同的盒子,其中每个盒子都不空的放法共有a种b种c18种d36 种3集合,从两个集合中各取一个元素作为点的坐

16、标,那么这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是a18 b10 c16 d 14 4用 1,2,3,4四个数字在任取数不重复取作和,那么取出这些数的不同的和共有a8 个b9 个c10 个d5 个二、填空题1由数字2,3, 4,5 可组成 _个三位数, _个四位数, _个五位数用 1,2, 3,9 九个数字,可组成_个四位数, _个六位数商店里有15种上衣, 18 种裤子,某人要买一件上衣或一条裤子,共有_种不同的选法要买上衣、裤子各一件,共有_种不同的选法. .jz*大小不等的两个正方体玩具,分别在各面上标有数字1,2,3,4,5,6,那么向上的面标着的两个数字之积不小于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论