基于RLS算法自适应滤波器_第1页
基于RLS算法自适应滤波器_第2页
基于RLS算法自适应滤波器_第3页
基于RLS算法自适应滤波器_第4页
基于RLS算法自适应滤波器_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、基于RLS算法自适应滤波器作者: 日期:基于RLS算法自适应滤波器的设计摘要自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,山于没 有充足的信息来设讣固定系数的数字滤波器,或者设计规则会在滤波器正常运行 时改变,因此需要研究自适应滤波器。凡是需要处理未知统计环境下运算结果所 产生的信号或需要处理非平稳信号时,自适应滤波器可以提供非自适应方法所不 可能提供的新的信号处理能力。而且其性能通常远优于用常方法设计的固定滤波 器。本文从自适应滤波器研究的意义入手,介绍了自适应滤波器的基本理论思 想,具体阐述了自适应滤波器的基本原理、算法及设讣方法。自适应滤波器的算 法是整个系统的核心。对RL

2、S算法自适应滤波器做了详细的介绍,采用改进的 RLS算法设计自适应滤波器,并采用MATLAB进行仿真,通过实验结果来体现该 滤波器可以根据信号随时修改滤波参数,达到动态跟踪的效果,使滤波信号更接 近于原始信号。关键词:自适应滤波器,RLS算法,噪声消除,FIR第1章绪论1.1课题研究意义和目的滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广 泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之 一。Windrow等于1967年提出的自适应滤波系统的参数能自动的调整而达到最 优状况,而且在设讣时,只需要很少的

3、或根本不需要任何关于信号与噪声的先验 统讣知识。这种滤波器的实现差不多像维纳滤波器那样简单,而滤波器性能儿乎 如卡尔曼滤波器一样好。自适应滤波器与普通滤波器不同,它的冲激响应或滤波 参数是随外部环境的变化而变化的,经过一段自动调节的收敛时间达到最佳滤波 的要求。自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、 输岀及原参量信号按照一定准则修改滤波参量,以使它本身能有效的跟踪外部环 境的变化。因此,自适应数字系统具有很强的自学习、自跟踪能力和算法的简单 易实现性。自适应滤波技术的核心问题是自适应算法的性能问题,提出的自适应算法主 要有最小均方(LMS)算法、递归最小二乘(RLS)算

4、法及相应的改进算法如:归 一化(NLMS)算法、变步长(SVSLMS)算法、递归最小二乘方格形(RLSL)算法 等。这些算法各有特点,适用于不同的场合。研究自适应算法是自适应滤波器的 一个关键内容。递归最小二乘(RLS)算法是线性自适应滤波算法中最基本的两 类算法之一,山于基于LMS准则的自适应滤波算法的收敛速度通常较慢,有些在 调整过程种的延时也较大。为了克服LMS的算法,我们釆用在每个时刻对所有已 输入信号重估的平方误差之和最小这样的准则,即RLS算法。RLS算法复数乘法 正比于使其自适应速度更快。LI前应用最多的是系统辨识、回波消除、自 适应谱线增强、自适应信道均衡、语音线性预测、自适应

5、天线阵等诸多领域。1.2国内外研究发展状况自适应滤波的基本理论通过儿十年的发展已日趋成熟,近十儿年来自适应滤 波器的研究主要针对算法与硬件实现。算法研究主要是对算法速度和精度的改 进,其方法大都采用软件c、MATLAB等仿真软件对算法的建模和修正。通常,自 适应滤波器的硬件实现都是用DSP通用处理器(如TI的TMS320系列)。DSP器 件采用改进的哈佛结构,具有独立的程序和数据空间,允许同时存取程序和数据, 内置高速的硬件乘法器(MAC),增强的多级流水线。DSP具有的硬件乘法模块 (MAC),专用的存储器以及适用于高速数据运行的总线结构,使DSP器件具有高 速的数据运算能力。LI前,用DS

6、P器件处理数字信号已经成为电子领域的研究热 点。在自适应信号处理领域,对于数据处理速度在儿兆赫兹以内的,通用DSP 器件也是首选。迟男等人在TMS320C32芯片上扩展EPROM和RAM,实现了 30阶 LMS自适应滤波器,使用的刀D转化器件为AD1674,最拓采样频率为1 OOKHz。 陆斌等人采用TMS320C30数字信号处理器与IMSA110专用滤波器并行处理的方法 设讣出了自适应滤波器并应用于直接序列的扩频接收系统1221。赵慧民等人在 TMS320C31上实现了自适应权向量滤波器,完成了信号采样频率为SOKHz的自适 应滤波。在数据处理速度只要求在儿兆赫兹以内的应用场合,这些用DSP

7、实现的 自适应滤波器能很好的满足系统实时的需求。在这种需求场合下,DSP具有不可 媲美的性价比。但是随着信息化的进程加快和计算机科学与技术、信号处理理论与方法等的 迅速发展,需要处理的数据量越来越大,对实时性和精度的要求越来越高。以迅 速发展的移动通信技术为例,从IG时代只能传送语音的模拟通信,到2G时代的 传送语音和数据的GSM、TDMA与CDMA1595,到2. 5G时代传送语音、数据、图片、 彩信MMS、简短视频、收发E-ma订、网页浏览等的GPRS与CDMA20001X,到LI前 正处于研发与测试阶段的能够传送图像、音乐、视频流等多种媒体形式,提供包 括网页浏览、电话会议、电子商务的3

8、G通信,以及口前正在研发与憧憬中的能 够传送高质量流畅的视频流与多种实时流媒体业务的4G通信。常用的数字系统目标器件除了 DSP处理器外还有专用集成电路(ASIC)、专 用标准电路模块(ASSP)和现场可编程门阵列(FPGA)。ASIC和ASSP是专门针 对完成某种数字信号处理算法的集成电路器件,因此其在性能指标、工作速度、 可靠性和成本上优于DSP处理器。其优秀的工作性能主要源于特定的算法全部由 ASSP和ASIC中的硬件电路完成。ASSP是半定制集成电路,在许多DSP算法的实 现方面都优于DSP (数字信号处理器),但在功能重构,以及应用性修正方面缺 乏灵活性;ASIC专用集成电路使用超大

9、规模专用集成电路ASIC的实现方法是实 用化的产品唯一可行的方法,只有使用IC,才有高可靠性和可接受的价格及体 积功耗等。ASIC虽然有一定的可定制性,但开发周期长,而且有一个最小定制 量,在实验室研制开发阶段,开发成本非常高。现代大容量、高速度的FPGA在 可重配置的数字信号处理应用领域,特别是对于任务单一、算法复杂的前端数字 信号处理运算,有独特的优势。另外,FPGA所具有的大规模并行处理能力和可 编程的灵活性使得设讣的系统能获得极高的处理性能,并且能够适应日益变化的 标准、协议和性能需求。用FPGA实现自适应滤波器,国外起步比较早,发展也 非常迅速。Hesener A.于1996年提出了

10、用FPGA实现自适应滤波器的设想,并在 FPGA上实现了处理速度可达SM的8阶8位FIR滤波器oWoolfries N.等人用FPGA 实现了自适应栈滤波器,并应用于图象处理。Dawood A.等人用FPGA开发了自适 应FIR滤波器并与DSP处理器方案进行了比较研究。国内有一些关于自适应算法 硬件实现的研究,但基本是针对自适应滤波器中的算法,如南开大学李国峰的博 士论文用VHDL语言描述了正负数的运算问题和浮点数运算问题,完成了基于FIR 的LMS自适应滤波器的硬件设计与逻辑综合。国防科学技术大学江和平等人讨论 了自适应卡尔曼算法的简化,并完成了 FPGA的设计。同济大学梁屮华等人重点 讨论

11、了编码方法在FPGA的技术问题。上海交通大学范瑜等人介绍了用VHDL语言 实现并行延时LMS算法的自适应数字波束成形器的FPGA设计过程。而针对自适 应格型结构采用FPGA硬件实现的文献报导很少,国内中国科学技术大学王显洁 等人通过采用流水线结构和运算单元分时复用,提高了运算速度,能够满足实时 性预测编码要求。1. 3本文研究思路与主要工作在信号的传播路径中以及在信号处理过程中,都会引入噪声。噪声的引入影 响了对真实信号的处理,有时候,较强的噪声会“遮盖” 了信号,从而难以得到 准确、稳定的真实信号。噪声对信号的污染在绝大多数情况下是不可避免的,因 而,对噪声的消除和抑制是信号处理中极其重要的

12、工作。在信号传输和处理过程 中,最常见的噪声形式为口噪声、带限白噪声、高斯口噪声、瑞利分布口噪声。 RLS (Recursive Least square)自适应滤波器常常用于噪声消除器的构建,本文介绍了自适应滤波器原理,对RLS自适应算法进行分析,最后用MATLAB 对自适应滤波器进行了仿真和实现,并分析了该自适应滤波器的性能。第2章 自适应滤波器理论基础2.1数字滤波器的基本概念凡是有能力进行信号处理的装置都可以称为滤波器。如果滤波器的输入和 输出均为离散信号,称该滤波器为数字滤波器。当滤波器的输出信号为输入端的 线性函数时,该滤波器称为线性滤波器,否则就称为非线性滤波器。一个典型的 数字

13、滤波器的框图如图2. 1所示。图2.1数字滤波器设输入信号为H"),输出信号为)心),该数字滤波器可用以下差分方程来表示:M-lN-yOO = X 厲 xG 一 ')一 工叽 y(n 一 D(2-1)r-0r-1式中g *称为滤波器系数。当$=0时,上式变为:>©)=() (2-2)J-0这种滤波器称为全零点滤波器。如果4 =0,勺工0时,则称为全极点滤波器或递归滤波器。M-1D忆J-0山上式,可知数字滤波器的传递函数为:(2-3)其单位冲击响应函数为:X(2-5)y(n) = /z(;2)® %(/?)=工 h(i)x(n -i)如果当0时,有力)

14、二0,这样的滤波器系统称之为因果系统。如果冲激响应函数是有限长的,即:h(n)= <7如0 <n<NO.else(2-6)则称此滤波器为有限冲激响应FIR(FinitelmpulseResponse)滤波器,否则,称 之为无限冲激响应IIR(InfinitelmpulseResponse)滤波器。如果加2)满足如下条件:h(n)= 0,n < 0知 <C >(2_7)/!=<) .则称此滤波器是因果的,并且是稳定的。2.2自适应滤波器的原理自适应滤波器山参数可调的数字滤波器和自适应算法两部分组成(如图2. 2 所示)。参数可调数字滤波器可以是FIR数字

15、滤波器或IIR数字滤波器,也可以是 格型数字滤波器。输入信号兀)通过参数可调数字滤波器后产生输出信号(或响 应)y(/0,将其与参考信号(或称期望响应)(同进行比较,形成误差信号心)。 e(n)(有时还要利用x(n)通过某种自适应算法对滤波器参数进行调整,最终使 4")的均方值最小。因此,自适应滤波器实际上是一种能够自动调整本身参数的 特殊维纳滤波器。在设计时不需要事先知道关于输入信号和噪声的统讣特性的知 识,它能够在自己的工作过程中逐渐了解,或估计出所需的统计特性,并以此为依 据自动调整自己的参数,以达到最佳滤波效果。一旦输入信号的统讣特性发生变 化,它乂能够跟踪这种变化,自动调整

16、参数,使滤波器性能重新达到最佳:门。d(n)e(n)一i1x(ii)滤波器y(n)结构自适应滤4波器算法<<图2. 2自适应滤波器一般结构2.3自适应滤波器的算法自适应算法主要根据滤波器输入的统讣特性进行处理,它可能与滤波器的输 入及其他数据有关,因此,存在开环算法和闭环算法。开环算法的控制输出仅取决于滤波器的输入和其他输入数据;闭环的控制输 出则是滤波器输出及其他输入信号的函数。闭环控制利用输出反馈,它不但能在 滤波器输入信号变化时保持最佳输出,而且还能在某种程度上补偿滤波元件参数 的变化和误差及运算误差。但其存在稳定性问题和收敛速度不高的缺点;开环算 法的优点是调整速度快,一般

17、无稳定性问题,但通常它要求的计算量大且不能补 偿元件参数误差和运算误差,因此,一般采用闭环算法。自适应算法是根据某种判断来设计滤波器的。该算法包括最小均方算法LMS、 最小高阶均方算法LMF、最小平方算法OLS和递推最小算法RLS等dllWIDROW和HOFF 提出来的最小均方误差算法,因具有计算量小、易于实现、不依赖模型和性能稳 健等优点而被广泛采用。在自适应滤波器的实际操作中,一个必须注意的问题是自适应步长的选择。III LMS迭代算法可知,欲使其收敛,则自适应步长“的取值范围为0</<l/2max, 自适应时间常数和步长的关系为rmax=l/(4) 2:o2.4 RLS自适应

18、滤波器基于LMS准则的自适应滤波算法的收敛速度通常较慢,有些在调整过程种的 延时也较大。为了克服LHS的算法,我们采用在每个时刻对所有已输入信号虫估 的平方误差之和最小这样的准则,即RLS自适应滤波算法。从物理概念上说,这 是一种在现有约束条件下利用了最多可利用信息的原则。RLS自适应滤波器的结构框图如图2. 3所示:图2. 3 RLS横向自适应滤波器基本RLS自适应算法所遵循的准则是确定这样的W,它使e伙)=伙)一 WT X(k)(2-8)的加权平方和:k£ 伙,W)=工/1|曲)|2(2-9)r-i最小。其中:X 伙)=X 伙),X 伙一伙一 N + l)r(2-10)W = W

19、,叫'w”'(2T1)兄为略小于1的值,OS/IS1,称为遗忘因子。加入这个因资额的物理含义是在 权系数W所用到的输入信号中,我们对时间较近的数据加以较大的权来考虑,时 间教前的数据其权按指数规律减小。这样可使算法更能反映当前的情况,从而加 强对信号统计特性有缓慢变动时的适应性。2般取0.950. 9995,这种加权 的方式为指数权。为了使加权平方和最小,令:氐伙,W)dW(2-12)即:氐伙W)=丄扌兄I d(i)WTX(i)2dw aw trk= 22i d(i)-Xr(i)W X(i)=O(2-13)r-l因而有:A:k工QZ X(z) X'OJW X(i)(2-

20、14)/-lr-lk若令:R伙)=工久z X(i) Xr(i)(2-15)/-ikU(k)二工Qi di) X(i)(2-16)r-i则式2-14可写成:R(k) W(k) = U伙)(2-17)如果R伙)是非奇异的,则:W(Q = R"(k)U 伙)(2-18)上式就是求解滤波器参数的公式,它也是最佳滤波器系数的维纳(Winear)方程, 只是应注意这里的W伙)随时间k而改变。但式1-48来调整W伙)有两处不变: 第一,需要矩阵求逆及矩阵乘法等运算,因而计算量较大;第二,W伙)与预测 误差e伙)之间没建立关系,不能实现直接山预测误差e伙)来调整滤波器参数的要 求。不过我们注意到预测

21、误差e(k) IIIe伙)=伙)XT(k)W伙一 1)(2-19)表示。利用此表达式,可以将式2-27的U伙)改写为:U(k)=j lxr(i)W(i-l) + e(i) X(i)r-lk=工久2 X(i) X(i) W(f 1) + W) X(i) (2-20)e kkw伙)= /?"伙)qz x(o xp) w(r T)+ /r】伙)工肝 比)x(r)r-lJ-l= W(k) + W2 伙)(2-21)为了简化第一项州伙),并建立W伙)与W伙-1)之间的关系,认为R-1时刻及其 以前时刻的滤波器参数相同,即:W(0) = VV(1) =. = W 伙 一 1)(2-22)则有:k

22、伙)=R"伙)工才I X(i) X7 (/) W伙 一 1) = W伙 一 1)(2-23)/-1为了简化【竹仗),我们可以认为遗忘因子2 = 0,这相当于只有本时刻的结果被 记忆下来,而以前时刻的结果全部遗忘,于是伙)可写为:kW2(k) = R"(k)工()2 e(i) X(i) = R“(k) e(k) X伙)(2-24)/-i将式2-23和2-24带入2-22,可得:W伙)=W伙 一 1) + R"伙)X 伙)0伙)(2-25 )式2-36描述了一个滤波器参数受其输入误差£伙)控制的自适应滤波算法, 被称为递推最小 乘法(Recursive Le

23、ast Squares)o为了实现递推计算,还应解决逆矩阵R"(Q的递推计算问题。这里,我们引 入一个著名的引理一一矩阵求逆引理,该引理如下:若A是非奇异阵,则(2-26)(2-27)(A + BC丁 = A" - AB(I + C1CJ这里只要用(A + EC?)左乘上式右边,并严正其结果等于单位阵即可。由R伙)的定义式2-12可导出:R(k) = R 伙一 1) + X 伙)X,伙)利用矩阵求逆引理,得:(2-28)这样我们可以利用Rk)随k的迭代式而推得W伙)的迭代式。我们将基本RLS 的自适应滤波算法综合如下:初始化步骤:(对于k=0)令 W(0) = 0, /?(

24、0) = I运算步骤:对于到£所需的终了时刻e(k) = x(k)-Xr(k)W(k-l)(2-29)l + Xr(k)R t 伙 i)x 伙)(2-30)W伙)二W伙一 1) + R"伙)X伙)£伙)(2-31)从结构来看RLS自适应滤波器的自适应是通过对输入数据进行一定的算法 实现的,所以这种结构是“开环”的。RLS算法中的耐伙)与LMS算法中的“作 用相同,但“为标量,而R"(k)则是随£而变的矩阵的逆,这说明不同时刻W伙) 的每个元素的调整量均随新进的数据的不同步长因子做调整,而不是统一的用同 一个因子“来调整,这表征了调整的精细性及新

25、信息数据利用的充分性。RLS算 法复数乘法正比于使其自适应速度更快用。第3章 基于RLS算法自适应滤波器的实现3.1 Matlab仿真自适应滤波器在许多场合,一个输入信号往往包含有周期性信号和宽带成分,而周期性信 号是期望得到的。如图4. 1所示是一个自适应噪声消除滤波器(ANC)的原理图,输 入是带有噪声的正弦波,它能够通过自适应调节,分离出信号中所包含的周期性 成分和随机成分,从噪声中还原出正弦波。其原理是当周期信号和噪声混合的输 入信号被延长一定时间后,其中的周期信号成分是高度相关的,但根据高斯理论 的推断,噪声信号是不相关的。于是自适应滤波器就会减小输出信号中噪声的能 量,产生周期信号

26、的最佳估汁信号。周期信号和噪声都是时变信号,因此滤波器必 须根据输入信号的特性适应这种变化,决定权值的选取,最终使得输出信号的能 量最低,这样就从某种程度上消除了噪声冋。下面用Mat lab中的Simulink工具对自适应滤波器进行模拟仿真。 如图3. 2所示,是RLS设置参数:图3. 2 RLS滤波器设置参数即递推最小二乘自适应滤波器的FIR阶数为32,存储指数的权重因子为1. 0, filtertaps的初值为0. 0,初始输入的估计方差为0. 1。Simulink仿真模型界面图,如图3. 3所示。图3. 3 RLS自适应滤波器滤除噪声仿真模型界面图3.2自适应滤波器性能分析观察显示结果,

27、其中Time Scope的显示,如图3. 4所示。图3.4 FIR阶数位32的波形显示界面图从图3. 4中可以看出,第一个显示器中显示的信号为周期信号,代表有用信号; 第二个显示器显示的是被噪声干扰后的周期信号;第三个显示器显示的是经过所 设计的自适应滤波器后的波形。笫一个显示器中也含有滤波后的波形以便与原周 期信号进行比较。第四个是噪声信号。从图3. 4中可以分析岀,一开始输出信号为0,经过冲次迭代后,自适应滤波器慢慢调整权值使输出信号逼近原周期信号,最后与周期信号基本重合。图3. 5和图36分别是FIR阶数位16和64的仿真输出所示。.Ipv- I . - I 1 i* * 、图3. 5阶

28、数64波形显示界面图将图3. 3、图3. 4及图3. 5中的第一个显示器中的波形比较可以发现,当阶数位 16时,自适应速度慢而且滤波效果差,噪声较大,当阶数位64时,自适应的滤波 器大幅提高,但滤波效果较阶数位32时就差了许多,因此,为了提高滤波器的滤 波效果,在设讣RLS自适应滤波器时阶数尽量选择32附近。如图3. 7和图3. 8分别的滤波后的幅度响应和功率频谱。4-n 54£1 41-111403111>1111111十11111 a a1B 1113?41 » 1i111/11(1 1 B: 丄仆乍r. 个4c、111J111111I:、U2 I1%.1111Vj-Frame;0311652CL(XU-图37幅度响应-102Q-30-40Frame:01 02 031 04图3. 8功率频

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论