版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、如何精确地设计、制作、建造出现实生活中这些椭圆形的如何精确地设计、制作、建造出现实生活中这些椭圆形的物件呢?物件呢?生生活活中中的的椭椭圆圆一一2圆的定义是什么?我们是怎么画圆的?圆的定义是什么?我们是怎么画圆的?1.两点间的距离公式两点间的距离公式,若设若设a(x1,y1) b(x2,y2)则则:|ab|=?212212|yyxxab在平面内,到定点的距离等于定长的点的在平面内,到定点的距离等于定长的点的轨迹轨迹。yxo),(yxpr设圆上任意一点设圆上任意一点p(x,y) 以圆心以圆心o为原点,建立直角坐标系为原点,建立直角坐标系 rop ryx 22两边平方,得两边平方,得 222ryx
2、3.如果将圆的定义中的一个定点变成两个如果将圆的定义中的一个定点变成两个定定 点点,动点到定点距离的定长变成动点到两动点到定点距离的定长变成动点到两定点的距离之和为定长定点的距离之和为定长.那么,将会形成什那么,将会形成什么样么样 的轨迹曲线呢?的轨迹曲线呢? 4.动手作图工 具: 纸板、细绳、图钉作 法: 用图钉穿过准备好的细绳两端的套内,并把图钉固定在两个定点(两个定点间的距离小于绳长)上,然后用笔尖绷紧绳子,使笔尖慢慢移动,看画出的是什么样的一条曲线 平面内与两个定点f1、f2的距离之和等于常数(大于|f1f2|)的点的轨迹叫椭圆椭圆。两个定点f1、f2称为焦点焦点,两焦点之间的距离称为
3、焦距焦距,记为2c。若设m为椭圆上的任意一点,则|mf1|+|mf2|=2a注:定义中对“常数”加上了一个条件,即距离之和要大于|f1f2| (2a2c,ac0)f1f2m123化化 简简列列 式式设设 点点建建 系系f1f2xy 以以f1、f2 所在直线为所在直线为 x 轴,线段轴,线段 f1f2的垂直平分线为的垂直平分线为 y 轴建立直角坐标系轴建立直角坐标系p( x , y )设设 p( x,y )是椭圆上任意一点是椭圆上任意一点设设|f1f2|=2c,则有,则有f1(-c,0)、f2(c,0)- , 0c , 0cf1f2xyp( x , y )- , 0c , 0c 椭圆上的点满足椭
4、圆上的点满足|pf1 | + | pf2 |为定值,设为为定值,设为2a,则,则2a2c221|=+pfxcy222|=-+pfx cy则:则:2222+-+= 2xcyx cya2222+= 2 -+xcyax cy2222222+= 4-4-+-+xcyaax cyx cy222-c =-+axax cy22222222-+=-acxa yaac设设222-= 0acbb得得即:即:2222+=1 0 xyababo方程方程: :2222+= 1 0 xyabab是椭圆的是椭圆的标准标准方程方程xyof1f2p焦点为:焦点为:f1( -c , 0 )、f2( c , 0 ) 若以若以f1,
5、f2所在的直线为所在的直线为y轴,轴,线段线段 f1f2的垂直平分线为的垂直平分线为x 轴建立轴建立直角坐标系,推导出的方程又是怎直角坐标系,推导出的方程又是怎样的呢?样的呢?方程方程: :2222+= 1 0 xyabba也是椭圆的也是椭圆的标准标准方程方程焦点为:焦点为:f1( 0 , -c )、f2( 0 , c )注注:椭圆的焦点在坐标轴上,且两焦:椭圆的焦点在坐标轴上,且两焦 点的中点为坐标原点点的中点为坐标原点.oxyf1f2m(-c,0)(c,0)yoxf1f2m(0,-c)(0 , c)0(12222babyax)0(12222babxay椭圆的标准方程的再认识:(1)椭圆标准
6、方程的形式:左边是两个分式的平方和,右边是1(2)椭圆的标准方程中三个参数a、b、c满足a2=b2+c2。(3)由椭圆的标准方程可以求出三个参数a、b、c的值。(4)椭圆的标准方程中,x2与y2的分母哪一个大,则焦点在 哪一个轴上。2222+=1 0 xyabab2222+=1 0 xyabba分母哪个大,焦点就在哪个轴上分母哪个大,焦点就在哪个轴上222=+abc平面内到两个定点平面内到两个定点f1,f2的距离的和等的距离的和等于常数(大于于常数(大于f1f2)的点的轨迹)的点的轨迹12- , 0 , 0,fcfc120,-0,,fcfc标准方程标准方程不不 同同 点点相相 同同 点点图图
7、形形焦点坐标焦点坐标定定 义义a、b、c 的关系的关系焦点位置的判断焦点位置的判断4.根据所学知识完成下表根据所学知识完成下表xyf1 1f2 2poxyf1 1f2 2po22221.153xy ,则a ,b ;22222.146xy ,223.194xy ,则a ,b ;则a ,b ;则a ,b 224.137xy ,534632372.判定下列椭圆的焦点在什么轴上,写出焦点坐标1162522yx答:在答:在 x 轴上轴上,(-3,0)和()和(3,0)116914422yx答:在答:在 y 轴上轴上,(0,-5)和()和(0,5)62322 yx答:在答:在y 轴上轴上,(0,-1)和(
8、)和(0,1)判断椭圆标准方程的焦点在哪个轴上的准则:判断椭圆标准方程的焦点在哪个轴上的准则:x x2 2与与y y2 2的分母哪一个大,则焦点在哪一个轴上。的分母哪一个大,则焦点在哪一个轴上。1162522yx(1)已知椭圆的方程为: ,则a=_,b=_,c=_,焦点坐标为:_焦距等于_;若cd为过左焦点f1的弦,则f2cd的周长为_543(3,0)、(-3,0)620f1f2cd15422yx(2)已知椭圆的方程为: ,则a=_,b=_,c=_,焦点坐标为:_焦距等于_;曲线上一点p到焦点f1的距离为3,则点p到另一个焦点f2的距离等于_,则f1pf2的周长为_21(0,-1)、(0,1)
9、252 532 52xyf1 1f2 2po动点p到两定点f1(-4,0),f2(4,0)的距离之和为8,则动点p的轨迹为-( ) a.椭圆 b.线段f1f2 c.直线f1f2 d.不能确定b例例1:求适合下列条件的椭圆的标准方程:求适合下列条件的椭圆的标准方程:(1 1)两个焦点的坐标分别是()两个焦点的坐标分别是(4 4,0 0)、()、(4 4,0 0),),椭圆上的一点椭圆上的一点p p到两焦点距离的和等于到两焦点距离的和等于1010;解:解: 椭圆的焦点在椭圆的焦点在x轴上轴上 设它的标准方程为设它的标准方程为 所求的椭圆的标准方程为所求的椭圆的标准方程为22221(0)xya ba
10、b 2a=10, 2c=8 a=5, c=422222549bac 221259xy解:解: 椭圆的焦点在椭圆的焦点在y轴上,轴上,由椭圆的定义知,由椭圆的定义知,(2 2)两个焦点的坐标分别是()两个焦点的坐标分别是(0 0,2 2)、()、(0 0,2 2),),并且椭圆经过点并且椭圆经过点35,22 设它的标准方程为设它的标准方程为22221(0)yxabab222235352222222a2 1010a 又又 c=222210 4 6bac 所求的椭圆的标准方程为所求的椭圆的标准方程为221106yx求适合下列条件的椭圆的标准方程:求适合下列条件的椭圆的标准方程:(2)(2)焦点为焦点
11、为f f1 1(0,(0,3)3),f f2 2(0,3),(0,3),且且a=5a=5;2212516yx2216xy(1)a= ,b=1,(1)a= ,b=1,焦点在焦点在x x轴上;轴上;(3)(3)两个焦点分别是两个焦点分别是f f1 1( (2,0)2,0)、f f2 2(2,0),(2,0),且过且过p( )p( )点;点; (4)(4)经过点经过点p(p(2,0)2,0)和和q(0,q(0,3).3).小结:求椭圆标准方程的步骤:小结:求椭圆标准方程的步骤:定位:确定焦点所在的坐标轴;定位:确定焦点所在的坐标轴;定量:求定量:求a, ba, b的值的值. .622194yx23,
12、25221106xy例例2.2.已知方程已知方程 表示焦点在表示焦点在x x轴上的椭圆,则轴上的椭圆,则m的取值范围是的取值范围是 . .22xy+=14m(0,4) 变变1 1:已知方程已知方程 表示焦点在表示焦点在y y轴上的轴上的 椭圆,则椭圆,则m的取值范围是的取值范围是 . .2 22 2x xy y+ += =1 1m m - -1 13 3 - - m m(1,2)变变2 2:方程:方程 , ,分别求方程满足下列条分别求方程满足下列条件的件的m m的取值范围:的取值范围:表示一个圆;表示一个圆; 表示一个椭圆;表示一个椭圆;表示焦点在表示焦点在x x轴上的椭圆。轴上的椭圆。22xy125 m16 mm=9/2-16m25-16m2c,即距离之和大于焦距时。当2a=2c时,即距离之和等于焦距时当2a 0 xyabab2222+=1 0 xyabba分母哪个大,焦点就在哪个轴上分母哪个大,焦点就在哪个轴上22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加氢精制工标准化测试考核试卷含答案
- 甲基己基酮行业深度研究报告
- 2025年市政安全培训试题及答案
- 手工雕塑行业深度研究报告
- 三菱上悬挂胶套行业深度研究报告
- 生活口罩行业深度研究报告
- 2026年农业设备项目深度研究分析报告
- 2026年中国防水卷材布行业市场前景预测及投资价值评估分析报告
- 高渗透封底胶行业深度研究报告
- 系统高可用性设计与实现方案
- 建筑公司销售管理制度
- 2025年氯化铝铁混合剂项目市场调查研究报告
- 一例肺栓塞患者的护理查房
- 《桂枝香·金陵怀古》
- 线性代数(济南大学)知到课后答案智慧树章节测试答案2025年春济南大学
- 大规模圆覆盖求解-洞察阐释
- 公务车驾驶员安全培训课件
- NB/T 11643-2024煤炭快速定量装车系统通用技术标准
- 2022年度中央机关遴选笔试题B卷真题试卷答案解析
- 中国移动ai面试题库及答案
- 北师大版八年级数学上册教案(全册)教学设计含教学反思
评论
0/150
提交评论