




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十四章 整式的乘法与因式分解14.2 乘法公式复习复习: : 多项式与多项式相乘的法那么多项式与多项式相乘的法那么: :多项式与多项多项式与多项式相乘式相乘, ,先用一个多项式的每一项乘另一个多项式先用一个多项式的每一项乘另一个多项式的每一项的每一项, ,再把所得的积相加再把所得的积相加. .计算以下各题计算以下各题: :(1) (a+b)(a-b)=? (2) (a+2)(a-2)=? (1) (a+b)(a-b)=? (2) (a+2)(a-2)=? (3) (3-x)(3+x)=? (4) (2m+n)(2m-n)=?(3) (3-x)(3+x)=? (4) (2m+n)(2m-n)=
2、? 比较等号两边的代数式比较等号两边的代数式, ,它们在系数和字它们在系数和字母方面各有什么特点母方面各有什么特点? ?两者有什么联络两者有什么联络? ?平方差公式平方差公式: :(a+b)(a-b)=a2-b2(a+b)(a-b)=a2-b2即两数和与这两数差的积等于这两个数的平方差即两数和与这两数差的积等于这两个数的平方差. .做一做做一做: :将图甲中阴影部分的小长方形变换到图乙位置将图甲中阴影部分的小长方形变换到图乙位置, ,他能根据两个图形的面积关系直观地阐明平方他能根据两个图形的面积关系直观地阐明平方差公式吗差公式吗? ?a-ba ab bb ba-ba a甲甲乙乙a-b例例1 1
3、 运用平方差公式计算运用平方差公式计算: : (1)(3x+5y)(3x-5y) (1)(3x+5y)(3x-5y) 11(2)()()22baba例例2 2 用平方差公式计算用平方差公式计算: :(1) 103(1) 10397 (2)59.897 (2)59.860.260.2小结小结: :1.1.平方差公式平方差公式:(a+b)(a-b)=a2-b2:(a+b)(a-b)=a2-b2两数和与这两数差的积等于这两数的平方差两数和与这两数差的积等于这两数的平方差. .2.2.学会运用平方差公式进展计算学会运用平方差公式进展计算. . 一、复习引入一、复习引入他能列出以下代数式吗?他能列出以下
4、代数式吗?(1)(1)两数和的平方;两数和的平方;(2)(2)两数差的平方两数差的平方他能计算出它们的结果吗?他能计算出它们的结果吗?二、探求新知二、探求新知他能发现它们的运算方式与结果有什么规律吗?他能发现它们的运算方式与结果有什么规律吗?引导学生用本人的言语表达所发现的规律,允许学引导学生用本人的言语表达所发现的规律,允许学生之间相互补充,教师不急于概括;生之间相互补充,教师不急于概括;举例:举例:(1)(p(1)(p1)21)2(p(p1)(p1)(p1)1)_;(2)(p(2)(p1)21)2(p(p1)(p1)(p1)1)_;(3)(m(3)(m2)22)2_;(4)(m(4)(m2
5、)22)2_经过几个这样的运算例子,让学生察看算式与结果间经过几个这样的运算例子,让学生察看算式与结果间的构造特征的构造特征归纳:公式归纳:公式(a(ab)2b)2a2a22ab2abb2b2(a(ab)2b)2a2a22ab2abb2b2言语表达:两个数的和言语表达:两个数的和( (或差或差) )的平方,等于它们的平的平方,等于它们的平方和,加上方和,加上( (或减去或减去) )它们积的它们积的2 2倍这两个公式叫做倍这两个公式叫做( (乘乘法的法的) )完全平方公式完全平方公式教师可以在前面的根底上继续鼓励学生发现这教师可以在前面的根底上继续鼓励学生发现这个公式的一些特点:如公式左、右边的
6、构造,个公式的一些特点:如公式左、右边的构造,并尝试阐明产生这些特点的缘由并尝试阐明产生这些特点的缘由还可以引导学生将还可以引导学生将(a(ab)2b)2的结果用的结果用(a(ab)2b)2来来解释:解释:(a(ab)2b)2aa( (b)2b)2a2a22a(2a(b)b)( (b)2b)2a2a22ab2abb2.b2.2.2.教材例教材例4 4:运用完全平方公式计算:运用完全平方公式计算:(1)1022(1)1022(100(1002)22)2100210022 21001002 2222210 00010 0004004004 410 40410 404;(2)992(2)992(10
7、0(1001)21)2100210022 21001001 1121210 00010 0002002001 19 801.9 801.此处可先让学生独立思索,然后自主发言,此处可先让学生独立思索,然后自主发言,口述解题思绪,可先不给出标题中口述解题思绪,可先不给出标题中“运用完全运用完全平方公式计算的要求,允许他们算法的多样平方公式计算的要求,允许他们算法的多样化,但要求明白每种算法的局限和优越性化,但要求明白每种算法的局限和优越性四、再探新知四、再探新知1.1.现有以下图所示三种规格的卡片各假设干张,现有以下图所示三种规格的卡片各假设干张,请他根据二次三项式请他根据二次三项式a2a22ab
8、2abb2b2,选取相应种类和,选取相应种类和数量的卡片,尝试拼成一个正方形,并讨论该正方数量的卡片,尝试拼成一个正方形,并讨论该正方形的代数意义:形的代数意义:2 2他能根据以下图阐明他能根据以下图阐明(a(ab)2b)2a2a22ab2abb2b2吗?吗?第第1 1小题由小组协作共同完成拼图游戏,比一比哪小题由小组协作共同完成拼图游戏,比一比哪个小组快?第个小组快?第2 2小题借助多媒体课件,直观演示面积小题借助多媒体课件,直观演示面积的变化,协助学生联想代数恒等式:的变化,协助学生联想代数恒等式:(a(ab)2b)2a2a2b2b22b(a2b(ab)b)a2a22ab2abb2.b2.
9、3.3.添括号法那么添括号法那么 运用乘法公式计算,有时要在式子中添括号运用乘法公式计算,有时要在式子中添括号. .我们学过去括号法那么,即我们学过去括号法那么,即 a+(b+c)=a+b+c; a+(b+c)=a+b+c; a-(b+c)=a-b-c. a-(b+c)=a-b-c. 教师带着学生回想去括号法那么:括号前的符号教师带着学生回想去括号法那么:括号前的符号是是“+“+时,去括号后,括号内各项的符号不变;括号时,去括号后,括号内各项的符号不变;括号前的符号是前的符号是“-“-时,去括号后,括号内各项的符号改时,去括号后,括号内各项的符号改动动. .反过来,就得到添括号法那么:反过来,
10、就得到添括号法那么: a+b+c=a+(b+c); a+b+c=a+(b+c); a-b-c=a-(b+c). a-b-c=a-(b+c). 也就是说,添括号时,假设括号前面是正号,也就是说,添括号时,假设括号前面是正号,括到括号里的各项都不改动符号;假设括号前面括到括号里的各项都不改动符号;假设括号前面是负号,括到括号里的各项都改动符号是负号,括到括号里的各项都改动符号. .五、稳定拓展五、稳定拓展教材例教材例5 5:运用乘法公式计算:运用乘法公式计算:(1)(x(1)(x2y2y3)(x3)(x2y2y3)3);(2)(a(2)(ab bc)2.c)2.解:解:(1)(x(1)(x2y2y3)(x3)(x2y2y3)3)xx(2y(2y3)x3)x(2y(2y3)3)x2x2(2y(2y3)23)2x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工安全隐患排查工具试题及答案
- 注册土木工程师考试研究生课程试题及答案
- 制造业绿色供应链管理在绿色物流中的绿色运输车辆管理优化报告
- 物理模型问题解析及答案2025年
- 2025年制造业数字化供应链协同产业协同技术创新研究报告
- 查验员考试题及答案
- 能源行业数字化转型智能电网优化:智能电网设备运维与健康管理报告
- 生鲜新零售行业2025年供应链优化与冷链物流解决方案报告
- 家具行业的市场竞争与产品设计创新相结合的研究试题及答案
- 控烟知识试题及答案解析
- 风电基础施工方案
- ICD-10疾病编码完整版
- 肩关节超声检查
- 毕业论文-中小企业防火墙的应用
- 可穿戴式设备安全可靠性技术规范 腕戴式设备
- 内科学动脉粥样硬化和冠状动脉粥样硬化性心脏病
- ×××章程修订对比表
- 《运算的意义》(教学设计)-2023-2024学年六年级下册数学北师大版
- 高效养中蜂关键技术
- 广州小学六年级英语下册知识点归纳和习题(全册)
- (正式版)JTT 1482-2023 道路运输安全监督检查规范
评论
0/150
提交评论