(完整版)初中数学人教版(新)八年级上与三角形有关的线段教案_第1页
(完整版)初中数学人教版(新)八年级上与三角形有关的线段教案_第2页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、与三角形有关的线段教学设计(第 2课时) 一、 内容和内容解析 1 内容 三角形高线、中线及角平分线的概念、几何语言表达及它们的画法. 2 内容解析 本节内容概念较多,有三角形的高、中线、 角平分线和重心等有关概念; 需要学生动手 的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决 问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性, 激发学生热爱生活、 勇于探索的思想感情. 理解三角形高、角平分线及中线概念到用几何语言精确表述, 这是学生在几何学习上的 一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题, 起着十分重要的作

2、用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识 一个准备. 本节的重点是了解三角形的高、 中线及角平分线概念的同时还要掌握它们的画法, 难点 是钝角三角形的高的画法及不同类型的三角形高线的位置关系. 二、 目标和目标解析 1.教学目标 (1) 理解三角形的高、中线与角平分线等概念; (2) 会用工具画三角形的高、中线与角平分线; 2教学目标解析 (1) 经历画图实践过程,理解三角形的高、中线与角平分线等概念. (2) 能够熟练用几何语言表达三角形的高、中线与角平分线的性质. (3) 掌握三角形的高、中线与角平分线的画法. (4) 了解三角形的三条高、三条中线与三条角平分线分别

3、相交于一点. 三、 教学问题诊断分析 三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点, 另一个端点在这个顶点的对边或对边所在的直线上. 三角形的中线的理解: 三角形的中线也是线段, 它是一个顶点和对边中点的连线, 它的 一个端点是三角形的顶点,另一个端点是这个顶点的对边中点. 三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个 端点, 另一个端点在对边上. 而角的平分线是一条射线, 即就是说三角形的角平分线与通常的角平 线有一定的联系又有本质的区别. 四、 教学过程设计 1 抛砖引玉,提出问题 先演示画三角形的一条高,再给出问题: (1) 任画一个

4、三角形,你能画出它的三条高吗? (2) 同一个三角形的三条高线有什么位置关系? (3) 不同类型的三角形的三条高线的交点位置有什么差别? 师生活动:先让学生画图实践,教师下位随机点拔,再让会画和不会画的学生相互交 流提点,然后带着问题讨论,最后各小组派代表发言,师生共同归纳概念和画法. 设计意图:这一环节是一个重要的实践活动,需要学生动手实践,动口交流,动脑思 考,加深理解高线的概念和掌握画高线的作图能力. 2从实践上升到理论,形成概念 师生活动: 定义:从三角形的一个顶点出发, 向对边引垂线,这个顶点和垂足之间的连线段叫做三 角形的高线,简称三角形的高. 三角形的高有三条,特别强调:钝角三角

5、形的高有两条在三角形外部,一条在三角形 内部.直角三角形的两直角边就是高线. 任何三角形的三条高所在直线交于一点, 这点叫三 角形的垂心. 归纳:锐角三角形有 _ 条高,它们相交于一点,交点在三角形 _ ; 直角三角形有 _ 条高,它们相交于一点,交点在三角形 _ ; 钝角三-角形有 条高,它们所在直线相交于一点,交点在三角形 . 注意:三角形的咼是线段 (几何语言) AD是厶ABC上的高 AD 丄 BC (Z ADB = Z ADC = 90) 逆向: AD 丄 BC 垂足是 D AD 是A ABC 的边 BC上的高 几何语言表达可在学完三个定义之后统一学习便于学生比较记忆形成知识结构. 设

6、计意图:让学生体会由实践到理论的过程,培养学生的归纳总结能力. 补充说明:要养成习惯,画好高线后,随手标明垂直的记号和垂足的字母. 师生活动:结合具体图形,教师引导学生养成良好的作图习惯. 设计意图:进一步加深学生对几何符号和几何语言的熟悉. 3类比学习,掌握几何探究的基本方法. 用相同的探究方法引导学生学习三角形的中线和角平分线. 师生活动:与高线的探究类似. 4. 归纳总结,形成知识结构. 师生活动:师生共同完成这个表格. 三角形的重 要线段 定义 图形 表示法 三角形 的高线 从三角形的一个顶 点向它的对边所在 的直线作垂线,顶 点和垂足之间的线 段. 乙 E I A K ) C 1.

7、AD是厶ABC的BC上的 咼线. 2 . AD 丄 BC 于 D. 3.Z ADB= Z ADC=90 . 三角形 的中线 三角形中,连结一 个顶点和它对边中 点的线段 A 厶 B D C 1 . AE是厶ABC的BC上的 中线. 1 2 . BE=EC=匸 BC . 三角形的 角平分线 三角形一个内角的 平分线与它的对边 相交,这个角顶点 与交点之间的线段 B D 1 . AM 是厶 ABC 的/ BAC 的平分线. 1 2. /仁 Z 2=2 Z BAC . 设计意图:通过这一活动的设计,提高学生归纳概括的能力,了解几何语言简洁性. 5. 应用巩固 课本上P5第1、2题 补充练习: (1)

8、如图,AEg ABC的中线,部;当是直角三角形时, 这点在三角形直角顶点上; 当是钝角三角形时,这点在三角形外部,DE= 2,贝V BD的长为( ). EC= 6, A. 2 B . 解析:因为人已是厶ABC的中线, 所以BP EC= 6.又因为DB 2, 所以 BD= BE DE 6-2= 4. 答案:C (2) 下列说法正确的是( ). 平分三角形内角的射线叫做三角形的角平分线; 三角形的中线、角平分线都是线段,而高是直线; 每个三角形都有三条中线、高和角平分线; 三角形的中线是经过顶点和对边中点的直线. A .B .C .D . 解析:任何一个三角形都有三条高、 中线和角平分线,并且它们

9、都是线段, 直线,因此只有正确,故选 答案:B (3) 三角形的三条高在 A.三角形的内部 C.三角形的边上 解析:三角形的三条高交于一点, 不是射线或 B. ). B .三角形的外部 D 三角形的内部、外部或边上 但有三种情况:当是锐角三角形时,这点在三角形内 A 所以只有 D 正确 答案: D 学生通过解决这样的应用问题,特别是( 3)中又要用到分类讨论的思想,学生通过解 决问题的过程加深理解不同类型的三角形其高线都是交于一点,但交点位置却不同 设计意图: 除了考查学生的灵活运用的能力外, 逐步培养学生一些基本的数学思想, 能突破难点加深学生对三角形高线位置的理解,一举多得 6总结反思 教师和学生一起回顾本节课所学主要内容,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论