概率论与数理统计第三章课后习题答案(共25页)_第1页
概率论与数理统计第三章课后习题答案(共25页)_第2页
概率论与数理统计第三章课后习题答案(共25页)_第3页
概率论与数理统计第三章课后习题答案(共25页)_第4页
概率论与数理统计第三章课后习题答案(共25页)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.【解】X和Y的联合分布律如表:XY01231003002.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和Y的联合分布律如表:XY0123000102P(0黑,2红,2白)=03.设二维随机变量(X,Y)的联合分布函数为F(x,y)=求二维随机变量(X,Y)在长方形域内的概率.【解】如图 题3图说明:也可先求出密度函数,再求概率。4.设随机变量(X,Y)的分布密度f(

2、x,y)=求:(1) 常数A;(2) 随机变量(X,Y)的分布函数;(3) P0X<1,0Y<2.【解】(1) 由得 A=12(2) 由定义,有 (3) 5.设随机变量(X,Y)的概率密度为f(x,y)=(1) 确定常数k;(2) 求PX1,Y3;(3) 求PX<1.5;(4) 求PX+Y4.【解】(1) 由性质有故 (2) (3) (4) 题5图6.设X和Y是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y的密度函数为fY(y)=求:(1) X与Y的联合分布密度;(2) PYX.题6图【解】(1) 因X在(0,0.2)上服从均匀分布,所以X的密度函数为而所以 (

3、2) 7.设二维随机变量(X,Y)的联合分布函数为F(x,y)=求(X,Y)的联合分布密度.【解】8.设二维随机变量(X,Y)的概率密度为f(x,y)=求边缘概率密度.【解】 题8图 题9图9.设二维随机变量(X,Y)的概率密度为f(x,y)=求边缘概率密度.【解】 题10图10.设二维随机变量(X,Y)的概率密度为f(x,y)=(1) 试确定常数c;(2) 求边缘概率密度.【解】(1) 得.(2) 11.设随机变量(X,Y)的概率密度为f(x,y)=求条件概率密度fYX(yx),fXY(xy). 题11图【解】 所以 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的

4、号码为X,最大的号码为Y.(1) 求X与Y的联合概率分布;(2) X与Y是否相互独立?【解】(1) X与Y的联合分布律如下表YX345120300(2) 因故X与Y不独立13.设二维随机变量(X,Y)的联合分布律为XY2 5 80.40.80.15 0.30 0.350.05 0.12 0.03(1)求关于X和关于Y的边缘分布;(2) X与Y是否相互独立?【解】(1)X和Y的边缘分布如下表XY258PY=yi0.40.150.300.350.80.80.050.120.030.20.20.420.38(2) 因故X与Y不独立.14.设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布

5、,Y的概率密度为fY(y)=(1)求X和Y的联合概率密度;(2) 设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率.【解】(1) 因 故 题14图(2) 方程有实根的条件是故 X2Y,从而方程有实根的概率为: 15.设X和Y分别表示两个不同电子器件的寿命(以小时计),并设X和Y相互独立,且服从同一分布,其概率密度为f(x)=求Z=X/Y的概率密度.【解】如图,Z的分布函数(1) 当z0时,(2) 当0<z<1时,(这时当x=1000时,y=)(如图a) 题15图(3) 当z1时,(这时当y=103时,x=103z)(如图b) 即 故 16.设某种型号的电子管的寿命(以小

6、时计)近似地服从N(160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为Xi(i=1,2,3,4),则XiN(160,202),从而 17.设X,Y是相互独立的随机变量,其分布律分别为PX=k=p(k),k=0,1,2,PY=r=q(r),r=0,1,2,.证明随机变量Z=X+Y的分布律为PZ=i=,i=0,1,2,.【证明】因X和Y所有可能值都是非负整数,所以 于是 18.设X,Y是相互独立的随机变量,它们都服从参数为n,p的二项分布.证明Z=X+Y服从参数为2n,p的二项分布.【证明】方法一:X+Y可能取值为0,1,2,2n. 方法二:设1,2,

7、n;1,2,,n均服从两点分布(参数为p),则X=1+2+n,Y=1+2+n,X+Y=1+2+n+1+2+n,所以,X+Y服从参数为(2n,p)的二项分布.19.设随机变量(X,Y)的分布律为XY0 1 2 3 4 501230 0.01 0.03 0.05 0.07 0.090.01 0.02 0.04 0.05 0.06 0.080.01 0.03 0.05 0.05 0.05 0.060.01 0.02 0.04 0.06 0.06 0.05 (1) 求PX=2Y=2,PY=3X=0;(2) 求V=max(X,Y)的分布律;(3) 求U=min(X,Y)的分布律;(4) 求W=X+Y的分

8、布律.【解】(1) (2) 所以V的分布律为V=max(X,Y)012345P00.040.160.280.240.28(3) 于是U=min(X,Y)0123P0.280.300.250.17(4)类似上述过程,有W=X+Y012345678P00.020.060.130.190.240.190.120.0520.雷达的圆形屏幕半径为R,设目标出现点(X,Y)在屏幕上服从均匀分布.(1) 求PY0YX;(2) 设M=maxX,Y,求PM0.题20图【解】因(X,Y)的联合概率密度为(1) (2) 21.设平面区域D由曲线y=1/x及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在

9、区域D上服从均匀分布,求(X,Y)关于X的边缘概率密度在x=2处的值为多少?题21图【解】区域D的面积为 (X,Y)的联合密度函数为(X,Y)关于X的边缘密度函数为所以22.设随机变量X和Y相互独立,下表列出了二维随机变量(X,Y)联合分布律及关于X和Y的边缘分布律中的部分数值.试将其余数值填入表中的空白处. XYy1 y2 y3PX=xi=pix1x21/81/8PY=yj=pj1/61【解】因,故从而而X与Y独立,故,从而即: 又即从而同理 又,故.同理从而故YX123.设某班车起点站上客人数X服从参数为(>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中

10、途下车与否相互独立,以Y表示在中途下车的人数,求:(1)在发车时有n个乘客的条件下,中途有m人下车的概率;(2)二维随机变量(X,Y)的概率分布.【解】(1) .(2) 24.设随机变量X和Y独立,其中X的概率分布为X,而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u). 【解】设F(y)是Y的分布函数,则由全概率公式,知U=X+Y的分布函数为 由于X和Y独立,可见 由此,得U的概率密度为 25. 25. 设随机变量X与Y相互独立,且均服从区间0,3上的均匀分布,求PmaxX,Y1.解:因为随即变量服从0,3上的均匀分布,于是有 因为X,Y相互独立,所以推得 .26. 设二维随机

11、变量(X,Y)的概率分布为XY -1 0 1 -101a 0 0.20.1 b 0.20 0.1 c其中a,b,c为常数,且X的数学期望E(X)= -0.2,PY0|X0=0.5,记Z=X+Y.求:(1) a,b,c的值;(2) Z的概率分布;(3) PX=Z. 解 (1) 由概率分布的性质知,a+b+c+0.6=1 即 a+b+c = 0.4.由,可得.再由 ,得 .解以上关于a,b,c的三个方程得.(2) Z的可能取值为-2,-1,0,1,2,即Z的概率分布为Z-2 -1 0 1 2P0.2 0.1 0.3 0.3 0.1(3) .习题四1.设随机变量X的分布律为X -1 0 1 2P1/

12、8 1/2 1/8 1/4求E(X),E(X2),E(2X+3).【解】(1) (2) (3) 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差.【解】设任取出的5个产品中的次品数为X,则X的分布律为X012345P故 3.设随机变量X的分布律为X -1 0 1Pp1 p2 p3且已知E(X)=0.1,E(X2)=0.9,求P1,P2,P3.【解】因,又,由联立解得4.袋中有N只球,其中的白球数X为一随机变量,已知E(X)=n,问从袋中任取1球为白球的概率是多少?【解】记A=从袋中任取1球为白球,则 5.设随机变量X的概率密度为f(x)=求E(X),D(X).

13、【解】 故 6.设随机变量X,Y,Z相互独立,且E(X)=5,E(Y)=11,E(Z)=8,求下列随机变量的数学期望.(1) U=2X+3Y+1;(2) V=YZ -4X.【解】(1) (2) 7.设随机变量X,Y相互独立,且E(X)=E(Y)=3,D(X)=12,D(Y)=16,求E(3X -2Y),D(2X -3Y).【解】(1) (2) 8.设随机变量(X,Y)的概率密度为f(x,y)=试确定常数k,并求E(XY).【解】因故k=2.9.设X,Y是相互独立的随机变量,其概率密度分别为fX(x)= fY(y)=求E(XY).【解】方法一:先求X与Y的均值 由X与Y的独立性,得 方法二:利用

14、随机变量函数的均值公式.因X与Y独立,故联合密度为于是10.设随机变量X,Y的概率密度分别为fX(x)= fY(y)=求(1) E(X+Y);(2) E(2X -3Y2).【解】 从而(1)(2)11.设随机变量X的概率密度为f(x)=求(1) 系数c;(2) E(X);(3) D(X).【解】(1) 由得.(2) (3) 故 12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X,求E(X)和D(X).【解】设随机变量X表示在取得合格品以前已取出的废品数,则X的可能取值为0,1,2,3.为求其分布律,下

15、面求取这些可能值的概率,易知 于是,得到X的概率分布表如下:X0123P0.7500.2040.0410.005由此可得 13.一工厂生产某种设备的寿命X(以年计)服从指数分布,概率密度为f(x)=为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望.【解】厂方出售一台设备净盈利Y只有两个值:100元和 -200元 故 (元).14.设X1,X2,Xn是相互独立的随机变量,且有E(Xi)=,D(Xi)=2,i=1,2,n,记,S2=.(1) 验证=, =;(2) 验证S2=;(3) 验证E(

16、S2)=2.【证】(1) (2) 因 故.(3) 因,故同理因,故.从而 15.对随机变量X和Y,已知D(X)=2,D(Y)=3,Cov(X,Y)= -1,计算:Cov(3X -2Y+1,X+4Y -3).【解】 (因常数与任一随机变量独立,故Cov(X,3)=Cov(Y,3)=0,其余类似).16.设二维随机变量(X,Y)的概率密度为f(x,y)=试验证X和Y是不相关的,但X和Y不是相互独立的.【解】设. 同理E(Y)=0.而 ,由此得,故X与Y不相关.下面讨论独立性,当|x|1时, 当|y|1时,.显然故X和Y不是相互独立的.17.设随机变量(X,Y)的分布律为XY -1 0 1 -101

17、1/8 1/8 1/81/8 0 1/81/8 1/8 1/8验证X和Y是不相关的,但X和Y不是相互独立的.【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X,Y及XY的分布律,其分布律如下表X -101 PY -101 PXY -101 P由期望定义易得E(X)=E(Y)=E(XY)=0.从而E(XY)=E(X)·E(Y),再由相关系数性质知XY=0,即X与Y的相关系数为0,从而X和Y是不相关的.又从而X与Y不是相互独立的.18.设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov(X,Y),XY.【解】如图,SD=,故(X,Y)的概率密度为题18图从而同理而 所以.从而 19.设(X,Y)的概率密度为f(x,y)=求协方差Cov(X,Y)和相关系数XY.【解】 从而同理 又 故 20.已知二维随机变量(X,Y)的协方差矩阵为,试求Z1=X -2Y和Z2=2X -Y的相关系数.【解】由已知知:D(X)=1,D(Y)=4,Cov(X,Y)=1.从而 故 21.对于两个随机变量V,W,若E(V2),E(W2)存在,证明:E(VW)2E(V2)E(W2).这一不等式称为柯西许瓦兹(Couchy -Schwarz)不等式.【证】令显然 可见此关于t的二次式非负,故其判别式0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论